
Algorithms

Computer programs must follow a set of logical steps. These logical steps are described by an algorithm.

An algorithm sets out the steps need to solve a problem in a finite time.

We write out the logic of an algorithm using diagrams or some form of structured English known as pseudo-code. Pseudo code uses KEYWORDS to denote actions eg read or input and refers to variables, data structures, file operations and functions in a similar way to how you write the code.

There is no specific standard for pseudo-code and the algorithms presented below will introduce (I hope review) how to write pseudo code. The basic aim is to describe the processing using these constructs or your variation:

enclose blocks using () or what ever bracket you like, just be consistent.

name functions and give a type and return, use void for functions that return nothing.

eg int readData () (

logic block

return whatever

)

input and output eg read x or output y,

declare variables giving data type eg int x, real y, boolean flag etc.

assignment variable = value or for the pedantic variable (value

expressions are represented just like expression in programming languages

x = (a-b)*c

Selection Statement

if statements

if (condition) (true action block)

else (false action block)

endif ***optional)

case statements

eg
case v

v = v1 (perform actions)

v = v2 (perform actions)

end case

Looping or repetition

Countered loop

for (x =0, x < limit, x=x+1) (

logic of loop

)

Test at start of loop ie while condition

while (condition) (

logic block

)

Arrays eg int variable [max]

Files

open filename as sequential

open filename as directAccess

read record (field list) eg read record (id, name, age)

where id, name, age are variables in the algorithm used to hold the data. There are plenty of other acceptable ways to represent this operation.

Use seek record position with direct access files

close filename

EOF to represent end of file condition.

The algorithm is not program language dependant and this is an important point. A program listing is itself an algorithm and if you are writing all the time in a certain language you tend to write your algorithms in that language. However, an algorithm is designed to show the basic logic and can be transcribed into a variety of programming languages.

When constructing algorithms you don’t want to be worry about the detailed syntax of the programming language. In my experience beginning programmers find it difficult to deforce the syntax and structural requirements of the computer programming language they will use from the specific logic required of the problem solution.

Diagrams setting out logic sequence of steps can be flowcharts, N-S diagrams. Diagrams can also be used to set out the logic of complex decision processes eg tree-diagrams or decision tables. The logic is then transferred to an algorithm.

Algorithms can be broad in detail to describe the top level logic of main program control. You can also use a series of algorithms do add more detail (stepwise refinement) as you work down (top-down) though the detail of the problem. A structure is often used to show the broad algorithm and how the separate modules hang together. A detailed algorithm is then written for each module/function.

Algorithms can be very detailed and describe the logic in a way that be directly transferred to a programming language. Detailed level algorithms can be transcribed line for line into lines of processing code. Often the input and output and other language dependent features need to be added. But basic processing steps can usually be transcribed line by line. Ok, so why not write it that way in the first place – fair point!
Example of a Broad Algorithm.

Basic User interface.

(note for a menu system the event is the option selected usually stored as an integer eg response, for a GUI using an event driven method the event can be anything but is usually a mouse click that activates a particular handling program/routine/function v)

Start

While (EVENT not endUp) (

Display Interface

get EVENT

While EVENT invalid (

display error message get Event

)

case Event in event List (the handler part)

event = event1 (perform action)

event = event2 (perform action)

event = endUp event (perform action)

end case

)

End

Basic file handling main module/function

Start

OpenFiles

DisplayInterface

CloseUp

End

Detail level algorithm to read data in a set of global arrays. (best done using an object and then have an array of type object) assume the arrays are global!)

global int IdNumber[max]

global String studentName [max]

global int postCode[max]

global maxRecords

Start

int id, pcode

String name

Open studentFile sequential

int recordCount = 0

read record (id, name, pcode)

While (not EOF) (

IdNumber[recordCount] = id

studentName[recordCount] = name

postCode[recordCount]=pcode

recordCount = recordCount + 1 (I am happy with recordCount++)

read record (id, name, pcode)

)

maxRecords = recordCount

close studentFile

End

The following Examples assume data is in the above arrays and you better check my LOGIC!!!!!!!!!!!!!!

Function to sort the data. Use a bubble sort to sort the

void function SortData (int limit) (

for (I =0 ; I< limit-1; I++) (

for (j=0; j<I; j++) (

if studentName[j] > studentName[j+1]

(here is were we cheat a bit

swapTheDataFields. This is quiet acceptable as

would now create a separate function to do the

swapping (you can do that!!!)

)

)

)

)

Function to search the data

We can use a linear search. It is simple and does not require the list to be in order, but it is slow for very long lists. A binary search is much faster but requires the list to be sorted.

Assume a search for an ID and return the position in the array or –1 to indicate no match fund.

int Search (int look) (

int position = -1

for (I = 0; I< maxRecords ; I++) {

if IdNumber[i] = look (position = I)

)

return position

)

This algorithm can be improved by stopping if you find a match and assumes that there are no duplicate id’s.

Function to output report

You need a detailed design of the layout so the program can be constructed but the algorithm can outline the basic processing needed.

Start

output heading line 1 from layout

output date and other details on layout

for (j = 0; j<maxRecords ; j++) (

output IdNumber[j], StudentName[j], postCode[j] as per layout

)

Output “total records = “, maxRecords.

End

You can much more detail to the algorithm if needed. What about adding in a page counter and page feed aspect?

Function to count postcode details

Basically need an array that counts the frequency of postcodes and uses the postcode value as the index into the array. Assume post code range from 1111 to 9999 and we want to output the four top post codes in the list.

global pcount[9999]

Start (top level)

countPostCodes

SortPostCodes

OutputTopFour

End

function countPostCodes () (

for (I=0; I<maxRecords ; I++) (

pcount[psotCode[I]]=pcount[postCode[I]]+1

)

function sortPostCode() (

assume a function exists that accepts as an argument the array and the function is called sort(array name)

sort (pcode)

)

function outputTopFour () (

for (j =0; j<4; j++) (

 output pcode[j] as per layout

)

)

Decision table example

Algorithms can be derived from decision tables by looking down the columns to derive if statements. You can get more complex by looking for redundancy or using a case statement.

Data Structures and Stacks example

Data can be structured in a variety of ways.

· lists of data of the same type eg one dimensional or two dimensional array.

This is a static structure and can’t be extended whilst the program runs.

Dynamic list structures allow lists to be created and linked together by the use of pointes. Elements can’t be directly access via an index.

· record structure for groups data items of potential different type but related to the one entity. eg a file of records where the records holds and ID, Name and PostCode ie an int, String and int.

· Trees can be created using dynamic and static structures, although it is now mostly done using linked list pointer structures.

· A stack is a list structure that records events by placing them in a sequence. Items are placed onto the top of the stack and items are removed from the top of the stack. Stacks are used wherever you wish to be able to retrace your steps eg maze tracing, function call processing ie returning etc. Often referred to as Last In First Out (LIFO)

· A queue is a list structure that records events by placing them in a sequence. Items are added to the tail of the queue and removing them from the front of the queue. A print server queue operates in this way. Often referred to as First In First Out (FIFO)

An example of a stack program written in Java is shown below.

import java.io.*;

class stk2{

 static int stack [] = new int [10];

 static int sp=0;

 static void main (String [] args) {

 int response, item, stackValue;

 System.out.print("1: push 2: pop 3: print 4: quit ");

 response = io.getInteger();

 while (response !=4) {

 if (response == 1) {System.out.print("Input value to push onto stack ");

 item = io.getInteger();

 if (!stackFull()) push(item);

 else System.out.println("Stack Full");

 }

 if (response == 2) {if (!stackEmpty()) stackValue=pop();

 else System.out.println("Stack empty");}

 if (response == 3) {printStack();}

 System.out.print("<1>: push <2>: pop <3>: print <4>: quit ");

 response = io.getInteger();

 }

 }

 static boolean stackFull(){

 if (sp==data.length) return true;

 else return false;

 }

 static boolean stackEmpty(){

 if (sp==0) return true;

 else return false;

 }

 static void printStack(){

 if (sp!=0)

 {for (int i=0; i<stack.length; i++) {

 System.out.println(stack[i]);}

 }

 else {System.out.println("Error: stack empty");}

 }

 static void push(int x){

 stack[sp++]=x;

 }

 static int pop(){

 int stkval;

 stkval=stack[--sp];

 return stkval;

 }

}

Exam algorithm questions. Past exams have a range of algorithms questions that you should study.
Document1

 AUTHOR TECH

