[image: image8.wmf][image: image9.png]MuSQL

 AND
Well done!

You’ve made it through the forest of Tkinter, past the haunted lake of Pmw and emerged (fairly) unscathed from a duel with Tabnanny. Good on ya!

Now, it gets REALLY interesting

Obviously, you’ve all read the study design for Unit 4 and you would know that the SAC for Outcome 1 is as follows:

“On completion of this unit the student should be able to apply the stages of software development to produce purpose-designed software that takes into account a networked information system objective and the needs of end-users.”

A few key words here that I have highlighted for you:
Firstly – You have to design your own software (just like in Unit 3) using Python to meet an objective

Secondly – We need to use a networked information system – so that a number of people can use the system simultaneously. Remember your SAC in Unit 3? Well, really only one user at a time could use it – NO GOOD for a networked system

Thirdly – we need to meet the needs of the users of a particular scenario
So, what we’re going to do is create a GUI (Graphical User Interface) using Tkinter, to allow us to enter and retrieve data that is saved in a MySQL database.

I’m not going to go into a great deal about what MySQL is, how it works etc., short of saying that its FREE, you can download it at home if you want, it’s a database and its pretty common throughout the world. There are lots of variations on it (PostGreSQL, MSSQL amongst others)

If you want more information – go to www.mysql.com and there’s loads of information

On with the show…

Chapter 1 – Getting MySQL installed and sorted

Thankfully, MySQL is already installed and ready to go on our (your) server that you are going to be playing with, so no need to worry about that. If you want to set it up at home, go to www.mysql.com, download the version that you need and follow the instructions – dead easy. If you DO NOT have access to the internet, or you are on dial up, see me for a copy of MySQL that you can have on your flashdrive.

You will also need to download the MySQL bindings that allow Python to talk to MySQL – these are already downloaded for us, so no need to worry, but if you want to install these at home, go to:

http://sourceforge.net/project/showfiles.php?group_id=22307

and download the latest release version (at time of writing it was 1.2.2) or see me with your flash drive. You just run the .exe file – dead easy!

Ok, so to get access to MySQL on the server, you need to type in

At home, you need to go to START > PROGRAMS > MySQL > MySQL Server 5.0 > MySQL Command Line Client and input details straight from there.

Chapter 2 – Some SQL queries
You should now be faced with a black window (called the COMMAND LINE CLIENT) where you input data. It will look something like this.

[image: image1.png]. MySQL Command Line Client

nter password:

Your PASSWORD is xxxxxx

Now the screen will look like this

[image: image2.png]Encer passuord: somooo
jelcone to the MySQL monitor. Commands end with 3 or \g.
our MySQL connection id is 135

5.8.41-connunity-nt MySQL Community Edition (GPL)

ype “helpi’ or *\h’' for help. Type ’\c’ to clear the buffer.

All your commands to create your database table and set field sizes, names and the such like will be done here

· Type help after the mysql> cursor

You will have a list of commands that you can use. At the level we are using MySQL, we won’t be using many of these, with the exception of USE and EXIT.

NOTICE how the mysql> cursor is back – that means you can type something in straight away.

· Now type in SELECT VERSION(), CURRENT_DATE;
You should have a table telling you the version of MySQL that you are using and the current date

MySQL is not too bothered about case, so you could type in:
· select version(), current_date;
Now try:

· SELECT USER();

The result of this is going to be important, so make a note of it. When I type this in I get this result:

[image: image3.png]ysql> select userd)

root@localhost

NOTICE that I typed in select user() and pressed Enter, then typed in ; to get the result. All queries in MySQL need to end with a semicolon (;). If you don’t put it in, then nothing will happen and you will need to enter it at the next cursor.
NOTICE that the result of this is root@localhost
root is my USER

localhost is my host.

I will need to use these in my script later on, so keep a note of the result you get.

Chapter 3 – Creating a database

Let’s say we want to create a database of our pets and their details.

First thing we do is see what databases already exist on our server, so that we won’t take a name that already exists.

· Type SHOW DATABASES;
[image: image4.png]wsql> show databasess

Database

information_schena

hours
nysql
tost

rous in set <B8.22 sec)

You should get this (above), WITHOUT the one called hours (that’s my test database)

Clearly, you will not call your database information_schema, mysql or test.

Also NOTICE that a database should be ONE WORD or joined by an underscore (or similar)

Lets call our database PETSRT (where the name is PETS with my initials afterwards) but USE YOUR OWN INITIALS!
· Type in CREATE DATABASE PETSRT;
· Then type USE PETSRT;
Now we need to create a TABLE in that database. Really advanced databases can have more than one table (ask anyone doing IT Apps!), but we’ll stick with one table for today.
· Type in CREATE TABLE pets (name CHAR(200), age INT(5), sex CHAR(1), species CHAR(100), breed CHAR(30);
This will CREATE a table called pets. There will be 5 fields, each of varying lengths (chosen depending on what is going in the fields)

The other choices of DATA STRUCTURE are below

Don’t ask me what they all mean, but the common ones are CHAR, INT, DATETIME, FLOAT, DATE, TIMESTAMP and YEAR, and that’s more than enough to be going on with!

[image: image5.png]Numbers Text Date and Time Defined Group
Integers® INT, Normal strings: Date and time Enumerated lists:
TINVINT, cuRr DATETIME =
SMALLINT,
uEpITMINT, BIGTNT
Fixed decimals Variable strings Date and time Sets of similar data
NUMERIC, DECIMAL | VARCHAR TIMESTRME sET
Floating point: FLORT, | Long text blacks: Date only: DaTE
DousLE TINYTEXT,

MEDIUMTEXT,

TEXT,

LARGETEXT

Binary Long Time only: TTE

Objects: 3208,

TINYSLOS,

MEDIUMBLOS,

zongsLos

Year only: vEaz

· Now type in EXPLAIN pets;
This will bring up a summary of your table and the type of DATA STRUCTURES that you have:

[image: image6.png]varchar¢258)
varchar(255)

varchar<255>
char(255>

The screenshot above is when I got the result for my test database called hours.

NOTICE that you type in EXPLAIN <table name> NOT EXPLAIN <database name>. A common error…

Now you need to ensure that you have access to read/write to your SQL database, BEFORE we start coding.
· GRANT ALL ON *.* TO ROOT@LOCALHOST IDENTIFIED BY “PASSWORD”;

Some explanation:
· We need to GRANT access to the username and hostname that we found out earlier, so replace ROOT@LOCALHOST with whatever you got from CHAPTER 2.

· Replace PASSWORD with a password that you want to use. This ‘stops’ others from accessing your table (unless they see your code)

· Now type SELECT * FROM PETS
It will (hopefully) report back that you have an ‘Empty Set’ which means that there are NO RECORDS in that table. Which there aren’t. ‘Cos we haven’t put any in yet.

REMEMBER that a database is split into TABLES. We need to USE database_name and then operate on table_name
Inserting Data
We will be inserting data via our Python script, but if you want to see that your database works…

· Type in INSERT INTO pets VALUES (‘Puffball’, ‘12’, ‘F’, ‘Dog’, ‘Rottweiller’);

This will insert these values in the order of the fields (Name then Age then Sex then Species then Breed). If you want a field blank, then type NULL.

· Now type in SELECT * FROM pets
And your first pet should be in there!

If you had LOTS of data to insert from Excel for example, you can save it as a .csv file (comma separated values) and load it as a batch, rather than typing them in singly)

This brings up a point of PLANNING YOUR DATABASE.

You MUST, MUST, MUST make sure that your database has the correct fields, field length, data structure and order of fields BEFORE you start typing it in to MySQL.

Plan it on paper first, ask other people what they think and THINK ABOUT YOUR FINAL SOLUTION – who are the users and what do they want?
You can alter your fields if you make a mistake (click here), but it’s a LOT less hassle to get it right straight away
Chapter 4 – Sorting our GUI out

Right, now that the bones of our database is sorted, we need to create a program to use our SQL database
[image: image7.png]soed
|

Qi
IGNORE ME!

Don’t panic if you cant remember how to do this stuff – you haven’t really done the basics since U3O2.

Use the tutorials and your previous programs to help you!

Lay out your GUI how you want – remember to make it attractive, colourful and well planned.

Use .grid, button pictures and different fonts.
Begin your script with this:

import MySQLdb

for fairly obvious reasons and then continue as normal.
Chapter 4 – Connecting our GUI to MySQL
This is the trick, and its NOT even difficult!
This is the def function for my SAVE button.

def but1():

 name = E1.get()

 hours = E2.get()

 rate = E3.get()

 wage = E4.get() #'Gets' the data from Entry boxes E1, E2, E3, E4
 myquery = "INSERT INTO hours_worked (name,hours,rate,wage) VALUES (\'"+name+"\',\'"+hours+"\',\'"+rate+"\',\'"+wage+"\')"
 db = MySQLdb.connect(host='localhost', user='root', passwd='hamish', db='hours') #Creates 'myquery' and inserts the results of this into a pre-created MySQL table
 curs = db.cursor() #Creates a cursor to make changes in the table
 curs.execute(myquery) #This executes the 'myquery'
 curs.close()
 db.commit() #this is the CRUCIAL line that needs to be here to COMMIT the changes to the database
 db.close() #this closes the database to anymore changes

The bits highlighted in blue are the ones you need to be aware of. The bits highlighted in yellow are my internal comments

The other bits are fairly obvious.
myquery is the name we’re going to give for the query (each query needs a different name)

INSERT INTO hours_worked VALUES is an SQL command – INSERT INTO tells Python to INSERT the data INTO a table (in my case called hours_worked, in your case it would be…

(\'"+name+"\',\'"+hours+"\',\'"+rate+"\',\'"+wage+"\')" – These are the names of the fields in your SQL database. They need to be THE SAME. Exactly. So yours would be name, age, sex etc. Python gets the values for name, age etc. from the bit at the top of the def function (name = E1.get() etc.). Replace E1.get() with the name of your Entry boxes and replace name, hours etc. with the names of your fields.

db = MySQLdb.connect(host='localhost', user='root', passwd='hamish', db='hours') – this is pretty obvious stuff – replace with your details
The rest of the code in blue is explained in the INTERNAL COMMENTS.

Each line is crucial – make sure you have them all and in that order.

The only bit you can alter is the
curs.execute(myquery), where you would change myquery to something else, if you changed it further up in the code
Whew!

Chapter 4 – Checking its all there

Right, our GUI is sending data to the SQL table in our database. But we need to check its there, both in SQL form and also through our GUI – remember that we don’t want our client having to go through the SQL command line interface all the time. First things first…

· Go to the MySQL command line interface, as we did in Chapter 2

· Type in your password

· Type SHOW databases;

· Type USE <your_database_name>;
· Type SELECT * FROM <your_table_name>;
Hopefully (really, really hopefully), you should have a record in your table that tells us all about Puffball the rottweiller!

I would advise you to check your SQL table at regular times, just to make sure that all is ok – keep the command line interface open when you’re tkinter-ing, and check when required.

Ok, so that’s how we check through SQL, but what about checking the contents through our GUI…

We’re going to use a listbox to update the records from the SQL table to our GUI, here we go…

STEP 1 – Insert a LISTBOX
You should remember how to do this, if not…

b5=Button(root,text="Add to List Box", command=but5)

b5.pack()

list = Listbox(root)

list.pack(expand=1,fill=BOTH)

Insert this under all your buttons and entry boxes

STEP 2 – Create a cursor for this task
def get_cursor_for_pets_table():

db = MySQLdb.connect(host='localhost', user='root', passwd='hamish', db='pets')

curs = db.cursor()

return curs
Put this in your defs somewhere. Remember to change host, user, password and db name to YOUR details!
STEP 3 – Collect all the data from the table in the database by using the FETCHALL command, close the cursor down and ‘return’ our Results

def get_all_entries():

curs = get_cursor_for_pets_table() #The previous definition

myquery = "SELECT * FROM pets" #The name of our query

curs.execute(myquery) #Executes the ‘myquery’

Results = curs.fetchall() #Fetches all the data

curs.close()

return Results # Returns the results
Put this under your previous definition

STEP 4 – Put all this data into our LISTBOX
def but5():

results = get_all_entries() # ‘results’ is the previous def

list.delete(0,END)

for result in results:

print result

name = result[0]

age = result[1]

sex = result[2]

species = result[3]

breed = result[4]

list.insert(END, name + " " + age + " " + sex + " " + species + “ “ + breed) # print all results in the listbox
The “ “ just put spaces in between the variables – if you wanted to, you could include writing here, such as “Name=” or “Sex=” etc. to make your list box a bit clearer.
STEP 5 – Initiate the Listbox…

list = Listbox()

list.pack(expand=1,fill=BOTH)

root.mainloop()

Done!

Chapter 5 – Some funky GUI / MySQL stuff

Timestamps

What if you wanted to know WHEN a record was last inserted? You could either ask the user to insert the date (and give the field a DATETIME data structure) which would involve a lot of typing from the user OR get SQL to automatically record the date & time. I know which I’d rather do…
This is easy…
When you create your table in MySQL, just create a field called date/date_entered or something like that and give it the data structure title TIMESTAMP, like below…

create table hours_worked (name CHAR(255),hours CHAR(255),rate CHAR(255),date_entered TIMESTAMP)

Each time a record is created, it automatically inserts a time/date stamp – handy…
Deleting a record
To be added

Adding a scrollbar
What if you have so many entries in your Listbox that you cant see them all? You need to get yourself a scrollbar!

This code goes into the bit that initiated our Listbox (see Chapter 4)

scrollbar = Scrollbar()

scrollbar.pack(side=RIGHT, fill=Y)

list = Listbox(root, yscrollcommand=scrollbar.set)

list.pack(expand=1,fill=BOTH)

scrollbar.config(command=list.yview)
The ‘yview’ is a scrollbar that goes vertically. You can also have ‘xview’ which is a scrollbar that goes horizontally – you probably wont need this…

Chapter 6 – Altering your tables
Adding a field

Let’s say you have created your table but forgotten to create the NAME field. Crisis!

Never fear, a solution is at hand, with the ALTER TABLE command…

Type in :
ALTER TABLE <tablename> (note NO semicolon)

ADD <fieldname> <fieldtype> AFTER <existingfieldname>;

So this would look like:

ALTER TABLE pets

ADD food CHAR(30) AFTER sex

Or, what if you want to add a field FIRST, so it ISN’T after anything…

ALTER TABLE <tablename>

ADD food CHAR(30) FIRST;
Remember that your coding will need to be altered in your Python script to add data to this new field.

Deleting a Field

What if you want to delete a field? Remember that if you delete a field, the contents of that field will go too, so be careful! This is not something you do late in the development of your database – when you delete a field your coding will need altering too. Careful planning should ensure that you NEVER need to delete a field.
ALTER TABLE <tablename>

DROP <fieldname>;

Changing a Field Name

What if you have spelt the name of a field incorrectly or want to change it?

ALTER TABLE <tablename>

CHANGE <existing_field_name> <new_field_name> <field type>;

So it would look like:

ALTER TABLE pets

CHANGE sex sex_of_pet CHAR(200);
Changing the structure of a Field

Maybe you want to change a field from CHAR(200) to VARCHAR(25)

ALTER TABLE <tablename>

CHANGE <existing_field_name> <new_field_name> <field type>;
So…

ALTER TABLE pets

CHANGE sex sex CHAR(200);

Deleting a whole table

You’re bored of that table, it has to go. Now! No worries!

USE <database_name>
DROP <table_name>;

Deleting a record

You want to delete a specific record or groups of records…

DELETE FROM <table_name>

WHERE <field_name > < <= >= digit>;

Looks complicated, but its not really…

DELETE FROM <pets>

WHERE sex =”m”;

Or

DELETE FROM <pets>

WHERE age<10;

Or

DELETE FROM <pets>

WHERE name=”Puffball”;

Deleting ALL records but leaving the table structure intact
DELETE FROM <table_name>
That was an easy one!

Create a tkinter program that is structured like this. Include a button that saves the data (don’t create the def function, just write pass in the code). Your delete button should delete the contents of all the entry boxes. Your quit button should destroy the root window.

Dead easy! – whaddya reckon – 10 minutes?

You can put the button in that says IGNORE ME, just don’t create a def for it (use pass)

