[image: image1.wmf]More advanced Python & Tkinter
When you begin to work on U4O1, you will need to incorporate more

advanced use of Python and Tkinter scripts. The outcome requires the

coding of 2 MODULES and it should look well presented and professional.

The following pages are ideas on how to gain that professionalism.

While Loops (Iteration)

There are times when you want to add a LOOP command. These loop commands are called iteration in computer speak, which means that they repeat, unlike an IF…ELSE command, which simply conducts an action when a particular rule has been met.

As an example, you can use a WHILE loop to create a password program…

password = "bob"

while password != "unicorn":

password = raw_input("Password: ")

print "Welcome in"
This is a nice simple example of a WHILE loop.

Note that != means ‘not equal to’
This password program would be nice to put into an outcome somewhere…

Putting pictures into Tkinter

Any Tkinter application that you create allows you to insert piccies,
but not just ANY picture. They HAVE to be GIF or JPG images. If you’re not sure what your image is, just hover your mouse over it, or look at the filename extension (you need a .gif or a .jpg). If you have a .bmp (bitmap) for example, you can change the filename extension to .jpg or .gif, but there may be a loss of quality.*
myImage = PhotoImage(file = "balloon.gif")

Picture=Label(image = myImage).grid(row=1,column=1,sticky = W+E)

Dead easy – you can put the images in as a Label or an Entry box or in a Button.
Again, this is something that makes your final product look a bit more professional.
If you have forgotten what .grid, row, column and sticky mean – check the 1st part of this tutorial.

* If you remember correctly from the first part of the tute, you will remember that there are some built in piccies that you can use for your Labels, Entry boxes and Buttons – they were accessed by writing…

Label1 = Label(bitmap=”questhead”).pack()

The builtin pictures are – error, gray75, gray50, hourglass, info, questhead, gray25, gray12, question and warning.

Opening modules from a central control

What I’m getting at here is pressing a button and opening another module (or program) that you have saved. For example, you might be creating a piece of software that has a stock control module (how much stock the company has) and a payroll module (how much to pay the workers). They are totally different programs, but linked to the same company.

To make your solution seem professional, you need to have a main ‘switchboard’ with a button that opens the payroll module, a button that opens the stock module and maybe a button to quit the program.

We know how to close (or quit) a window – root.destroy(), so now we are going to look at how to open another module…

STEP 1

Create a function that sits there, directing traffic – a bit like the one we did to save information as a text file
It should look EXACTLY like this

def importModule(FullPath):

 FileH = open(FullPath,'r')

 return imp.load_source("stockmodule","",FileH)

You can change a few bits – they are in red. The name of your definition (obviously – a different name for each module you want to import), the name FileH (different for each definition too) and the name of your module (mine is called stockmodule)
STEP 2

Define your button to do something, like this

def b2():

 importModule("stockmodule.pyw")

and that’s it!

Message Boxes

Pop up message boxes can be quite useful to tell the user what is happening. This is how to put one in your code.

from Tkinter import *

root = Tk()

Labelfont = ('Arial','20')

msg = Message(text="Hello!")

msg.config(font=Labelfont, bg='red')

msg.pack()

root.mainloop()

This is a simple message box that pops up when you want it to, for example if a button is pressed. To close the message box, just click the X.

This can be a nice touch to welcome a user to a program (you could ask for their name and then use a message box to say “Welcome, David”. You could also use one to throw up HELP if a button is pressed.
There is also a Pmw version, see http://pmw.sourceforge.net/doc/MessageDialog.html
def about():

 dialog1 = Pmw.MessageDialog(root,title = 'About this program', message_text = ‘This is where your message goes')

 dialog1.activate(root)

 dialog1.withdraw(root)
To be honest, the Pmw one is probably easier than the Tkinter one – see the website above for more things that you can do with the Pmw message box.
These message boxes are REALLY useful for bringing up HELP or INFORMATION about your program – you know how programs have an ‘ABOUT’ menu option, and it tells you who wrote it, when they wrote it etc.?

Menus (again)

I talked about menus in the previous tutorial – just a reminder…

from tkinter import *

import Pmw

root=Tk()

root.geometry("200x200")

Pmw.initialise(root)

root.title("Menu system")

def quit():

 root.destroy()

def save():

 pass

def open():

 pass

def callback():

 print "called the callback!"

def about():

 pass

menu = Menu(root)

root.config(menu=menu)

filemenu = Menu(menu)

menu.add_cascade(label="File", menu=filemenu)

filemenu.add_command(label="Open Saved File", command=open)

filemenu.add_command(label="Save to .txt File", command=save)

filemenu.add_separator()

filemenu.add_command(label="Exit", command=quit)

helpmenu = Menu(menu)

menu.add_cascade(label="Help", menu=helpmenu)

helpmenu.add_command(label="About this program", command=about)

root.mainloop()
You should know what all this does…

Paste it in and work it out – Pass is just a way of setting up your defs without them doing anything, so Python wont crash or anything. Using menus is a nice way of SAVING, OPENING and QUITTING your program without using buttons.
You don’t NEED to import Pmw here, or initialise it. I just do it by habit, in case I need to use Pmw later…

