An Introduction to Python and Tkinter
© R Taylor 2006-7
[image: image2.wmf]
	Part 1 – CREATING A WINDOW
	Part 2 – ADDING TEXT
	Part 3 – ADDING BUTTONS
	Part 4 – DESIGNING THE BUTTONS

	Part 5 – ACTIVATING BUTTONS
	Part 6 – ACTIVATING BUTTONS (2)
	Part 7 – ADDING TOPLEVEL WINDOWS
	Part 8 – USING ENTRY WIDGETS

	Part 9 – VALIDATING ENTRIES WITH PMW
	Part 10 – OVERVIEW OF WIDGETS
	Part 11 - MENUS
	Part 12 – REMEMBERING DATA

	Part 13 – CLEARING ENTRY BOXES
	Part 14 - .GRID FUNCTION
	Part 15 – SAVING TO .TXT FILE
	Part 16 – OPENING A .TXT FILE

Further References

[image: image3.png]

Using Tkinter in Python
1. Creating a window

Tkinter is a GUI (Graphical User Interface) module that comes with Python as standard. There are plenty of other GUI modules that you can use with Python, including wxPython and easygui amongst others. In order to do Unit 3 Outcome 2 and Unit 4 Outcome 1, we need to be able to write a software module(s) that uses a GUI. So this is how we do it!
All the following objects are called widgets.

1. Load up Python as normal and open a new window
2. Type in:

from Tkinter import * #this imports the tkinter module

3. Now type in:
root = Tk() #this establishes the window

root.mainloop() # this establishes the window on the screen

4. So you should have:

from Tkinter import *

root=Tk()

root.mainloop()

5. Save your file and run it (F5). A window should have appeared. If it didn’t, look through your script and find the error. Python may have highlighted the error in the console.

6. You can alter the size of the window by using the root.geometry command – it looks like this root.geometry(“axb+z+y”)
a – the width of the window in pixels

b – the height of the window in pixels

z – the distance from the left of the screen

y - the distance from the top of the screen

GET INTO THE HABIT of producing internal documentation when writing code (writing what you are doing by #I am doing this now) – You will NEED to do it for the Outcome.
Give your root window (or any window) a title by writing root.title(“My Title”)
MAKE SURE THAT root.mainloop() is ALWAYS the LAST LINE of your script

2. Adding text

We can add text to the windows.

1. Try this…

from Tkinter import * #this imports the tkinter module

root = Tk() #establishes the window
listbox = Listbox(root) #creates a listbox in the window
listbox.pack() #Tells Tkinter to pack the widget into the parent window
friend_list = ['ross','bob','john'] #this is my list of friends
for item in friend_list:

 listbox.insert(END,item) #for each item in the friend_list, insert it in the window
print friend_list #prints the friend_list in the window
root.mainloop() # executes the command
2. This prints a list of my friends into the window
3. The .pack command is something we will come back to later – it allows you to tell Python where in the window you want something to go.

HOMEWORK
Create 2 windows – 1 with a list of your 5 favourite foods and 1 with a list of your 5 favourite films

It should look something like this (but with different data)

3. Adding buttons

Lists of your favourite foods are all well and good, but we need some
interactivity. That’s the whole point of a GUI.

Remember that I said the objects were called widgets? Well, each widget can be told to do something or go somewhere. The commands to do this are called methods.

1. Bring up the last program you saved (the one with the list of favourite food and favourite films)

2. Your program should look something like this (apart from the bit in bold)
from Tkinter import * #this imports the tkinter module

root = Tk()

listbox = Listbox(root)

listbox.pack()

friend_list = ['ross','bob','john']

for item in friend_list:

 listbox.insert(END,item)

print friend_list

b0=Button(root,text="Hello")

b0.pack()

listbox = Listbox(root)

listbox.pack()

movie_list = ['godfather', 'abyss', 'poltergeist']

for item in movie_list:

 listbox.insert(END, item)

print movie_list

root.mainloop()

3. The command in bold tells Python to allocate a Button to the name b0. The Button goes into the root window and prints the text ‘Hello’.

4. b0 is then packed into the window where the friend list ended. If we added

 b0.pack(side=”right”)
 then the button would be on the right of the window. You can also use top, bottom and left.
Instead of side=RIGHT, which places the button at the RIGHT of the window, you can use anchor=a_compass_point_or_center. Have a play with this command – see the difference to SIDE? You can also control the relief style of the button in the but1=(root,text=”Button”,relief=”flat”)section of your code. The styles you can have are – FLAT, RAISED, SUNKEN, GROOVE, RIDGE.

AND, you can have pictures! By writing bitmap=”x”, where x is the style, you can have a picture instead of text.

The pics you can have as standard are – error, hourglass, info, questhead, question, warning.
5. We can also add

b0.pack(side=right,padx=10, pady=10)

6. This command adds 10 pixels of space to the left and right of the button (padx) and 10 pixels of space to the top and bottom of the button (pady)

HOMEWORK
Now, add a couple of buttons to your existing program – 1 below your favourite foods and 1 below your favourite films. Give them names (whatever you want).

4. Making the buttons look nice

Instead of using the pack command, we can use the Python Grid Manager
to align the buttons where we want them (see Ch 10 for more information on .grid)
1. Try this in a new window
from Tkinter import * #this imports the tkinter module

root = Tk()

b1 = Button(root,text="One")

b2 = Button(root,text="Two")

b3 = Button(root,text="Three")

b1.grid(row=0, column=0)

b2.grid(row=1, column=1)

b3.grid(row=2, column=2)

root.mainloop()
2. Dead simple – there are 3 buttons, b1, b2 and b3. b1 is called One and b2 is called Two and b3 is called Three.
3. I reckon you can work out what Python is doing if you run the program. Have a play with this and use different combinations.

4. You can add writing to your window like this too (see in bold)

from tkinter import * #this imports the Tkinter module

root = Tk()

b1 = Button(root,text="One")

b2 = Button(root,text="Two")

b3 = Button(root,text="Three")

Title = Label(root,text="I'm a Title")

b1.grid(row=0, column=0)

b2.grid(row=1, column=1)

b3.grid(row=2, column=2)

Title.grid(row=3, column=0)

root.mainloop()

5. The Label command works exactly the same as the Button command.
HOMEWORK
· Alter the position of your buttons using the grid command.

· Give your window a Label

· Use the padx and pady commands to leave some space around your buttons

Extension – Have a look at Page 14 of the Tkinter manual for some of the button options that you can have. As an example…

b1.configure(activebackground="red", activeforeground="blue", background="yellow", foreground="orange", underline="0")
Insert this line into your script and see what it does (in particular the underline command)

5. Making the buttons DO something!

If you’ve tried clicking the buttons, you’ll notice that they highlight and

depress fine, but they just don’t do ANYTHING!

Lets sort that out.

Bring up your last program (the one with the 3 buttons and the Label)

from Tkinter import * #this imports the Tkinter module

root = Tk()

b1 = Button(root,text="One")

b2 = Button(root,text="Two")

b3 = Button(root,text="Three")

Title = Label(root,text="I'm a Title")

b1.grid(row=0, column=0)

b2.grid(row=1, column=1)

b3.grid(row=2, column=2)

Title.grid(row=3, column=0)

def but1() : print "Button one was pushed"

b1.configure(command=but1)

root.mainloop()

Add the script in bold to your program.

You remember the def command from our Python tutorial, right? This widget has been configured to print “Button one was pushed” to the console when you press it.

Obviously, you can define other methods to the buttons too – see Chapter 12 of the Tkinter Manual on the Year 12 website for more information on this.
Button functionality.
When a button does something, this is called button functionality. So far we have managed to get a button to print something to the console – that is a function (the print function to be precise). We have to configure the button to get it to do something and we have to define that function first.

You will have noticed that if you use the print command as a command for the button, then the test that you printed is printed to the console, NOT to the root window. If we want the information printed to the root window, then you do this:

def but2():

 Label1=Label(root,text="I am in the window",fg="red",bg="pink")

 Label1.pack()

b2.configure(command=but2)

I think you’ll manage to work out what this does…

HOMEWORK
Your turn – Create a colourful button, in Algerian font that opens a new window when it is pressed
To change the font, you can do this:

Font1=(‘Bold’,’20’,’arial’) #creates a predetermined font which is arial, bold and 20
L1 = Label(root, text='Hello world’)
L1.config(font=labelfont)
L1.pack()
Thanks to Ben Curd, Year 12 (2007) for this tip

5. Making the buttons DO something! (Part 2)
The following is a nifty little def command that will come in VERY handy (hint, hint, nudge, wink etc.)

This command looks at your listbox and which item in your listbox you have got selected with your cursor (curselection). It then prints out what you have got selected into an Entry field (Name_Entry) AND deletes a previous entry first!

Many benefits to this method of entering text – If you have a fairly standard list of employees, you can choose for a list rather than typing their names in, saves time, reduces chance of mistakes, list format can be what you want (eg – SURNAME first)

def get_list():

 index = listbox.curselection()[0] # get selected line index

 seltext = listbox.get(index) # get the line's text

 Name_Entry.delete(0, 50) # delete previous text in enter1

 Name_Entry.insert(0, seltext) # now display the selected text

Obviously, you need to have this in conjunction with a Listbox and Entry box and you need a Button that activates the get_list command.

V. USEFUL!

6. Opening another window using the
Toplevel widget
At the moment, we have one window open – the root window. This is automatically created when you call up the Tk constructor and is of course very convenient for a simple application.

If you need to create additional windows, you can use the Toplevel widget. It simply creates a new window on the screen that looks and behaves like the original root window.

from Tkinter import *

root=Tk()

top = Toplevel()

root.mainloop()
This displays 2 windows when you run the script

I could also add another = Toplevel() under the top = Toplevel() command to have 3 windows open when the script runs.
You wanna close a window using a button?

Just define the function of the button to read:

root.destroy()

or whatever the name of the window is.

7. Entry widgets

To input text from the user, we use an entry widget. Just as in the

case of the buttons, we need some way to communicate with the entry

widget, in this case to set and retrieve text. This is done with a special Tkinter object called an Entry widget that simply holds a string of text and allows us to set its contents and read it.

Before we do this – have a play with the Text widget.
textbox = Text(root)

textbox.pack()

Open a Tk window and insert this script.

See the manual, page 40 – 42 for some more info about the Text widget
Task 1

Enter this code:

from Tkinter import *

root=Tk()

root.geometry('400x400+400+400')

def Insert():

 name = ent.get()

 list1.insert(END,name)

ent=Entry(root,bg="white",fg="red")

but1=Button(root,bitmap="questhead",bg="red",fg="green",relief="flat",command=Insert)

list1=Listbox(root,bg="yellow",fg="blue")

but1.pack(padx=25,pady=25,anchor=E)

ent.pack(padx=25,pady=25)

list1.pack(padx=25,pady=25)

root.mainloop()
1. Add comments to your code using the # key to tell me what is happening, line by line.

2. If I was to tell you that the way to delete the contents of a list box was the command name_of_listbox.delete(0,END), and the command for deleting the entry was name_of_entry.delete(0,END) then you should be able to create 2 buttons – one that deletes the contents of the listbox and one that deletes the contents of the entry box.

Validating your Entry

There comes a time in a person’s life when you have to VALIDATE the entry that the user is going to input. The easiest way is as below…

From tkinter import *
import Pmw

root = Tk()

Pmw.initialise()

Entry1=Pmw.EntryField(validate = {'max' : 5})

Entry1.pack()

root.mainloop()

You HAVE to import something called the Pmw module (Python Mega Widget). It is a collection of super-duper pre-programmed widgets. This one is an EntryField that I have told to only allow a maximum of 5 characters. You use it EXACTLY like a normal Entry field.

You can also do these:

Entry1=Pmw.EntryField(validate = 'integer')

Entry1=Pmw.EntryField(validate = 'alphabetic')

I’ll let you work out what they do…

Some Differences…

There are some CRITICAL differences between the normal Entry widget and the Pmw EntryField widget, the most important being that you cannot use textvariable=”whatever” to remember the entry.

You have to do this…

Entry1 = IntVar() or StringVar() or DoubleVar()
Entry1=Pmw.EntryField(validate = ‘integer’) in your main code
…and this to define your button to return the value

Def Return_EntryField_Value():

total=(float(Entry1.getvalue())+float(Entry2.getvalue()))

L1=Label(text=total)

L1.pack()

Obviously, you would replace Entry1 and Entry2 with whatever your variables are called. The float part converts the string into a floating number (that is one with a decimal point). If you wanted a whole number, use Int instead. You could also replace the Label with an Entry box if you wanted. Use the same idea of deleting the contents, then inserting the new contents as we have done previously.
A full list of Pmw can be found at http://pmw.sourceforge.net/doc/refindex.html
Adding Labels to your Pmw.EntryField

You can add a label to your EntryField, rather than adding a separate label, like this…

Entry1=Pmw.EntryField(root,labelpos = 'n', label_text = 'Enter stuff!',validate = {‘max’ : 5})

n in labelpos stands for NORTH. You can also have e, w and s

More information on the Pmw.EntryField option can be seen at http://pmw.sourceforge.net.doc/EntryField.html
Types of validation

Entry1=Pmw.EntryField(root,validate = {'validator' : 'alphanumeric', 'max' : 5})
The above script allows letters AND numbers up to 5 characters

You can have a range of different validators:

numeric – allows an integer greater than or equal to 0

integer – any integer (negative, 0 or positive)

hexadecimal – any hex number

real – A number with or without a decimal point

alphabetic – letters a to z or A to Z

time – in the format HH:MM:SS

(For a simple explanation of hexadecimal numbers - http://www.the-eggman.com/seminars/about_hex.html)

A widget overview

This is a good time to recap on our widgets

Remember – Python is a simple language to learn. Its syntax is simple

and it has some very powerful features built into the language. It supports lots of programming styles from the very simple through to state of the art Object Oriented techniques. It runs on lots of platforms - Unix/Linux, MS Windows, Macintosh etc. It also has a very friendly and helpful user community. All of these are important features for a beginner's language.

Widgets use a similar syntax > name = widget_name(root, method), except in the case of Text, which is name = Text(root). Root is the place you want to put the widget. If you have opened another window with the Toplevel widget, you would write this Label1 = Label(Toplevel, text=”The Title”).
Easy huh?
So,

Text = Text(root)
Label1 = Label(root, text=”I am a label”)
Button1 = Button(root, text=”I am a button”)
Listbox = Listbox(root)
See how the widgets are nearly laid out the same? As we saw earlier in this tutorial (page 6) we can add a lot of methods to our widgets – make sure you are happy to play with these.
8. Menu Functions.
You can have menus in your Tkinter applications and they are dead easy to create. The code looks long and horrible, but it makes perfect (well, almost perfect sense).

from Tkinter import *

root = Tk()

def hello():

 print "hello!"

menubar = Menu(root)

create a pulldown menu, and add it to the menu bar (FILE)
filemenu = Menu(menubar, tearoff=0)

filemenu.add_command(label="Open", command=hello)

filemenu.add_command(label="Save", command=hello)

filemenu.add_separator()

filemenu.add_command(label="Exit", command=root.quit)

menubar.add_cascade(label="File", menu=filemenu)

create more pulldown menus (EDIT)
editmenu = Menu(menubar, tearoff=0)

editmenu.add_command(label="Cut", command=hello)

editmenu.add_command(label="Copy", command=hello)

editmenu.add_command(label="Paste", command=hello)

menubar.add_cascade(label="Edit", menu=editmenu)

#HELP Menu functions
helpmenu = Menu(menubar, tearoff=0)

helpmenu.add_command(label="About", command=hello)

menubar.add_cascade(label="Help", menu=helpmenu)

display the menu

root.config(menu=menubar)

mainloop.root()

Paste the code into Tkinter and see what it does.

All that’s happening is a series of functions have to be defined for the menu options that you are going to have. All I’ve done is create one function called hello() which is activated by each button (see the command function?)

You want more menu choices? – add more pull down menus.

You want different names for the menu choices? – change the names!

9. Getting Tkinter to remember stuff
OK – important stuff. When you type something into an Entry field, you may want Tkinter to remember what you have typed in, so you can use it later. Lets say you have an Entry field where you want someone to type in how many hours they have worked and another Entry field where they type in how much they get paid per hour. To work out how much they have earned, all Tkinter has to do is multiply hours x wage per hour. Simple!

So, how do we do it?

Tkinter can remember 3 types of things – TEXT STRINGS (eg – a Name) NUMBER STRINGS (eg – the number of hours worked) and a thing called a FLOATING STRING (eg – cost of something in dollars – 3.99). It is VERY IMPORTANT that you use the correct type.

Example

Name_Label = Label(root,text="Insert Employee Name") Name_Label.pack(pady=10)

Name = StringVar() #This tells Python that the Name variable is a text string

Name_Entry = Entry(root,width=50,textvariable=Name)

Name_Entry.pack()

..snip..

Label2=Label(root,text=Name.get()) #Gets the Name from what was entered by user
Ok – above we have a simple Label that says “Insert Employee Name” and below it, an Entry field where the name can be typed in.

I have told Tkinter that the variable called Name is a StringVar (so Tkinter knows that it’s text). I have also said that the textvariable is called Name (the StringVar).

Further down, I have created another Label that prints out the variable Name (text=Name.get()). The .get() command is what GETS the information from the variable called Name.
If I was using numbers, I would just replace StringVar with IntVar or DoubleVar, depending on the type of number.

Easy peasy!

10. Clearing data from Entry boxes

OK, so people are entering data left, right and centre into your Entry boxes, you are capturing that data and using it for good and not evil. But there’s a problem, the user has to either re-run the program to enter different data OR backspace in each Entry box. Neither of which are very professional.

What you need is a button that clears all the data!

All you have to do is define a button function that clears data, like this…

def but2():

 Name_Entry.delete(0,END) #Deletes all the data entered by the user

 Hours_Entry.delete(0,END)

 Wages_Entry.delete(0,END)
All I’ve done here is define a button function that clears data from 3 of my entry fields – Name_Entry, Hours_Entry and Wages_Entry. Obviously, you would change these names to whatever YOU called your entry boxes!

Dead easy!

TASK

Produce a Tkinter window that has 2 entry boxes where the user inputs 2 numbers (1 in each), a button that adds them up and an entry box that displays the result. The entry box with the result should clear the existing data before displaying the new result.

It should look something like this…

[image: image1.png]Eter arumber

T

Erter anather rumber
0
Press to caleulae.

The sum of these rumbers s

[rosml tesnbs’

11. Laying everything out with .grid

So far we have used the .pack() command to lay stuff out on the screen. We used the side command and the padx and pady commands. They are all fine in their way, but sometimes you want it to be, well, a bit prettier.

Well, fear no more.

Welcome to the world of the .grid manager!

Imagine you screen is split into rows and columns. It might be 2 columns and 2 rows or 100 columns and 100 rows. The .grid manager allows you to specify the exact cell that you want a widget to be placed.

This is how it works…

NumberLabel=Label(text="Number in stock",font="arial").grid(row=10,column=1,columnspan=2, sticky = W+E)

Above is a line of text from a program I have written. It places a label saying “Number in stock”, in arial font. I have placed this label in row 10, column 1 of the screen. As I wrote the program, row 10 WAS the last row, but as I added more data, row 10 was ‘pushed up’ as it was no longer the final row.

That’s the beauty of the .grid manager – you just add rows and columns as you work through the program and Python will automatically adjust everything as it goes.

The columnspan tag just tells Python that I want this widget to start in column 1 and span over 2 columns (rather than just 1). The sticky W+E means that the widget is stretched to the left (west) edge of row 10/column 1 and the right (east) edge of column 2. You can also add N (top) and S (bottom) too.
Things to note:

Lets say you put a widget in row 12 and then want to leave a space and put something in row 14. The ‘normal’ thing to do is leave out row 13, yes? Well, Python doesn’t think so, it will make row 13 really tiny, so 12 and 14 are together. To get around this, add this to row 13…

Space=Label(text="").grid(row=13,column=0)

I have just added some text (really just a space to the row) which takes up that row!

ADVICE – When you are using the .grid manager, don’t add rows 1 by 1 – what I mean is don’t do …..grid(row1…) then …...grid(row 2) etc. What happens when you get to the end of the program and say “Bugger, meant to put in a widget at row 12, and you are now on row 214? You’d have to go back and re-word all the .grid coordinates!

Back in the days of the BASIC language, when you wrote a program, you had to give each line a number. The tradition was to give the first line number 10, second line number 20 and so on. This allowed you to squeeze in extra lines (11,12,13 etc) if you forgot!

You can use padx and pady with the .grid manager – just pop it in after row=x, column=y.

12. Getting Tkinter to save your data

We are writing programs for people to use – generally speaking they want to save their data! Remember that the aim of the outcome is to design a program that can be used on a PDA.

The BEST way to do this is to use your Python GUI program as a front end to a data base (usually SQL, or MySQL as its free), but then we’d need to learn how to use SQL, and we don’t have a great deal of time.

So, what we’re going to do is get Python to save your variables to a .txt file. That way, at least we have a record of the data that was entered.

OK, this is a bit more complicated than the stuff we have done, but bear with me.

STEP 1

Create a def function for your SAVE command as you would normally
def savefile():

 import time

 text_file = open('C:/write_it.txt', 'w')

 now = time.localtime(time.time())

 text_file.write("Date is : " +time.asctime(now))

 text_file.write("\n")

 text_file.write("John Smith: "+str(E5.get()))

 text_file.write("\n")

 text_file.write("Bob Smith: "+str(E6.get()))

 text_file.write("\n")

 text_file.write("Andy Smith: "+str(E7.get()))

 text_file.write("\n")

 text_file.write("Dave Smith: "+str(E8.get()))

 text_file.close()
STEP 2

Don’t worry about the bits in RED just yet.

text_file.write is the command we use to tell Python to write something to a file. It could be Bobs_bits.write or Johns_jumper.write if you wanted!
text_file.write("John Smith: "+str(E5.get()))
This line means that we will have John Smith: printed and after that, the data from E5 (which is an Entry Field)
NOTE – If you are saving data from a Pmw.EntryField, you may have to REPLACE .get() with .getvalue(). Try it and see…
I have defined a Button to call this command. When I press the button on my application, Python will save a .txt file which looks a bit like this…

Date is : Tue Mar 13 19:36:41 2007

John Smith: $120.0

Bob Smith: $240.0

Andy Smith: $360.0

Dave Smith: $480.0
The amounts in dollars come from the +str(E5.get()). Remember how we got Python to remember variable from an Entry widget (chapter 9)? Well, THAT’S how we do it. I have already placed Entry boxes, and allocated them as E5 = IntVar(), E6 = IntVar(), E7 = IntVar() and E8 = IntVar() and then just got Python to save the results. You could do this with ANY data in an Entry field – names, addresses etc.

The “\n” is a NEW LINE command, to make the contents of the .txt file a bit prettier.

REMEMBER to change the file path to YOUR FLASH DRIVE!
This stuff is a wee bit complicated. Remember that YOU are coding this from scratch, not using a Visual Editor (like .NET) which makes life easier. TAKE YOUR TIME, ask questions, play about with it at home.
The time bit is kinda flashy and also ensures that your client knows WHEN the file was created – pretty useful from a business point of view.
NB – The time thing may not work for you if you haven’t got the Python25 folder in your flash drive. If it doesn’t work, don’t worry about it…!

Opening the data

In this section we are opening the .txt file that we saved in the previous section. Here I am opening the data in a Pmw.MessageDialog widget (see Advanced Tkinter). The reason for this is none other than it looks quite fancy!

def openfile():

 text_file = open("C:/write_it.txt", "r")

 dialog3 = Pmw.MessageDialog(root,title = 'LAST ENTRY DATA', message_text = text_file.read())

 dialog3.activate(root)

 dialog3.withdraw(root)

 text_file.close()
This function opens a file called write_it.txt and reads it (that’s what the ‘r’ means)

The variable that the file is opened as is called text_file (you can change this)

We open text_file by doing text_file.read().

We print the contents of text_file as a Pmw.MessageDialog and then close the text_file.

You could also insert the contents of text_file into Entry boxes with the Entry_Box.insert(0,END) command

Having something like this would allow your user to open previous data (eg – amount of stock, names of employees and wages etc.) and have them displayed in front of them for information.

mmmm… I wonder if that’d be useful for the Outcome?

mmmm… I wonder if that’d make my Outcome look professional?

mmmm… I wonder if I should DO IT?

I’ll let you answer those questions…

Some useful references

This tutorial is a step by step guide through the basics of Python and Tkinter. There is MUCH more to know and learn, and sometimes this guide either won’t be detailed enough OR you want different information.

Listed below are some hyperlinks that have proved very useful for me and may prove useful for you. Don’t forget the manuals on the Year 12 Software Development website – download these onto your flashdrive and USE THEM!

http://effbot.org/librarybook/
http://www.ibiblio.org/g2swap/byteofpython/read/
http://www.pythonware.com/library/tkinter/introduction/
http://ibiblio.org/obp/py4fun/gui/tkPhone.html
http://www.ibiblio.org/obp/thinkCS/python/english2e/html/
http://wiki.python.org/moin/Intro_to_programming_with_Python_and_Tkinter
http://www.ibiblio.org/obp/pyBiblio/pythonvideo.php
http://www.ibiblio.org/obp/py4fun/
http://npt.cc.rsu.ru/user/wanderer/ODP/Python_for_Newbies.htm
http://www.freenetpages.co.uk/hp/alan.gauld/ - VERY GOOD

http://www.tutorialized.com/tutorials/Python/1
http://www.ferg.org/thinking_in_tkinter/all_programs.html
http://tkinter.unpythonic.net/wiki/Tkinter
http://infohost.nmt.edu/tcc/help/pubs/tkinter/tkinter.pdf
http://programming-crash-course.com/ - GOOD

http://www.awaretek.com/tutorials.html - LOTS of INFO

http://www.uselesspython.com/
http://www.java2s.com/Code/Python/CatalogPython.htm - REALLY GOOD
http://eventdrivenpgm.sourceforge.net/event_driven_programming.pdf - EXT.

The END command tells Python to add the next name at the END of the list. You can replace END with 0 – see what happens

- 24 -

