Create an external methods script

s
3 The two functions in the code define the methods by which you are extending w
the MovieClip class. The custom sub-class FadeColour defines the onPress and
onRelease event handlers which when pressed or released set the transparency
of the movieclip to 30 and 100 respectively. The this, statement means that these
functions will be invoked upon whatever MovieClip object is attached to the script.
4 Save the document as FadeColour.as in the FadeColour folder.
Step 2 - Assign the class to a moviedlip symbol
1t In Flash, choose File > New, then select Flash Document from the et L
list of file types, and click OK.
1 Using the Oval twol, draw a circle on the Stage.
3 Select the circle, and choose Modify > Canvert to Symbol.
4 In the Convert to Symbol dialog box, select Movie Clip as the
symbol’s behaviour, and enter fade_mc in the Name text box.
5 Select Advanced to show the options for Linkage, if they aren’t
already showing.
§ Select the Export for ActionScript option, and type FadeColour into ';__5;2‘?55?":;;#?;3“. E
the AS 2.0 Class field. Click OK. - Ul L s
7 Save the file as FadeColour.fla in the FadeColour folder (the same
folder that contains the FadeColour.as file} and test the movie.
Each time you click the movieclip its transparency should change. When the
mouse button is released the transparency should be restored. :
Extension @ More information on 00P
Create a sub-class which defines other properties and methods. For];c;(.)ks nted)
example, you could create a method which moves the movieclip around witjlf i;;;in;:ﬁg:ogmmmmg
theT stage v.vhen' the mouse button is clicked. Attach this class to MovieClip Branden Hall, Samuel Wan, New
objects using linkage. Riders Publishing 2003
N Flash MX 2004 at your fingertips
Sham Bhangal, Jen deHann,
. . Sybex Inc 2004
Jigsaw puzzle project 7
Web
In the following exercises you will create a simple four piece jigsaw www.java.sun.com/docs/books/
. : o : tutorial/javalconcepts/
puzzle, The aim of this project is to strengthen your understanding of ! ” "
object-oriented and procedural programming with ActionScript. You will .ac:{onscrt.p i—mo ox.com
construct some external code which defines some methods and extends actonscript.com
the built-in MovieClip class. You will then attach this code to movieclip
instances using the #include directive. The completed project can be viewed
by opening the supplied file jigsaw.swf.
5}6\% \

In this exercise you will create an external ActionScript file which will define some
methods. Later in the exercise this code will be attached to elements of the puzzle.

1 Open a new Flash document, save it as asscript.as in a new folder called jigsaw.
2 In the Actions panel, enter the following script,
this.onPress = function() {
{f(this,hitTest(root. xmouse, root._ymouse}) {
this.startDrag();

}

Continued next page,..

L

46 * Immopucion To AcrionSceer ASMX04 V1.0

Copyright © 2005 Natcoll Pubfishing

This first snippet of code defines a method which tests the x and y coordinates

of the mouse when it is clicked and evaluates whether the mouse pointer is
positioned over any object on the parent timeline (_root) to which this method is
attached. If the mouse pointer is over an object which is attached to the script, then
that object may be dragged with the mouse while the mouse button is held down.

In the code, this identifies an object or movieclip to which the code is attached.
Used in conjunction with #include a module of code can be attached to any object.

Continue to enter the following code in the Actions panel below the code you have

already entered.
‘this.onRelease = function() {
stopDrag();
name = this._ name;
int _name = name.substring(1);
int_name = parseInt(int_name);
if(eval(this. droptarget) == _parent[“inv_p”+int_name]) {
_parent.joined_mc[“p”+ int_name]. visible = true;

this. visible = false;

} else {
this. x = 100 + Math.random()*180;
this. y = 200 + Math,random{)*200;
}

}

This snippet of code defines a method which, when attached to the
puzzle pieces, will allow the selected piece to be dropped when the
mouse button is released. When released the puzzle piece will either drop
into position on the puzzle board, if correctly targeted, or drop into a
random position off the puzzle board if not.

- name = this. name; thisline of code declares a variable and assigns
it the name of the object to which it is attached.

int_name = name.substring(1); declares another variable and
assigns it the second character of the value stored in the variable
name. In the jigsaw puzzle cach puzzle piece is given an instance
name pi, p2, p3 or p4, so the second character will be either 1, 2, 3or
4, it will be stored as a string data type.

. int name = parseInt(ini_name}; converts the string values 1, 2, 3or
4 into integer numbers.

. if(eval(this. droptarget) == _parent[“inv_p”+int_name])
evaluates or compares the properties of the object being dragged with the
properties of the target object (inv_p).

» _parent.joined mc[“p”+ int_name]._visible = true;

Character indexing

The first character in a string
is indexed as character 0, the
second as character 1 etc.

O~

Watch you don’t confuse
these two operators.

= is an assignment operator
used to assign values to
variables.

== isa comparison operator
used to evaluate whether the
values stored in two variables
are equal.

@ Substring method

This can also be written as in
this example,

name. substring(2,4);

If the variable name had

the value “Natcell” then

the above statement would
return “tco” It takes all the
characters from index 2
through to index 4.

this., visible = false;

If the puzzle piece is dropped over its target, the dropped piece is
made invisible while the piece in the finished puzzle is made visible.
[“p”+ int_name] refers to an array storing the four puzzle piece
movieclips pl to p4.

this. x = 100 + Math.random()*180;

this._y = 200 + Math.random(}*200;

This snippet of code in the else statement is expressed if the puzzle
piece is not dropped in the right place on the puzzle board. In this
case the puzzle piece is placed at random screen coordinates.

Continued next page...

Math.random(}

This built-in method returns
a random decimal number
between 0 and 1. In the
exercise, when the randomly
chosen number for x is
maultiplied by 180 and then
100 is added, the x coordinate
will be a value between 100
and 280. Similarly, the y
coordinate will have a value
between 200 and 400.

_/

Copyright © 2005 Natcoll Publishing

(hapter 7: Programming techniques { 47

ae . ~ e N
i : ¥ .
o 4 Enter the following code in line 1 of the Actions panel (all subsequent code will be “‘@ Attach Actionsc"pt for th e start button toa frame
moved down one line). Also add another closing curly brace at the very end.
onClipEvent(load) { This snippet of code is attached to a frame and hides the puzzle pieces on the
This event handler triggers the actions defined in this script as scon as the object board when pressed. It creates a function which defines the method (behaviour)
to which this script is attached is loaded into the timeline. of the start button when it is released — the pieces making up the movieclip of the
. . . . : completed puzzle will become invisible.
5 Save this file as asscript.os in the figsaw folder and close the file. : b P In summary:
In the next exercise you will attach the functions you have written here to the jigsaw ' 1 Open the file jigsawfla (if it is not already open). (lass =MovieClip
puzzie pieces. Once functions are attached to objects they are called methods. 2 Inframe | of the actions layer enter the following in the Actions panek: Properties = all the properties
- - ' var no_of_pieces:Number = 4; of the dass
: _OT_p : - Methods = alf the methods of
= : N start.onRelease = function() { the dlass
ASSemble the jlgsaw . for(i = 1; i <= no_of pieces; i+) {
. .)) joined_mc[“p”+i]._visible = false;
1 Open the file jigsaw.fla. In the Library you will find all of the elements required to
complete this project. } @ Looping backwards
2 In this file you will find one layer named buttons. Create four more layers and } To count backwards from
ih " . nvisible and et . .) ten to one using a loop you
name them actions, pieces, invisible and complete. _ S The forloop will compl‘?te four iterations, one co-uld use something like
3 On the complete layer, place an instance of the movieclip completed_puzzle on to I comee O Heme i : for each of the puzzle pieces p1, p2, p3and p4. this: Class = MovieClip
3 EERLE Birmag ¢ . . . s . . -
the Stage. In the Properties panel name this instance joined_mc. Gu! buoss - gni. it Each time through it will make the current for(i = 10; 1 > 0 1i--) Object = complete_puzzle
pieal Mavis Ci . o L =
4 On the pieces layer, place instances of the movieclip symbols piece 1, piece 2, jinis puzzle piece invisible. Propeln::s _ua:zllzmpemes o
. . - compiete_|
Ppiece 3 and piece 4 on to the stage. Give each instance the corresponding instance | B — 3 Save and test your movie. It should now be fully functional. Meti?nds:I:m methods called
name pl, p2, p3or pd. i % iirary e N vy
5 On the invisible layer, again place instances of the movieclip symbols ol ~
Piece 1, piece 2, piece 3 and piece 4. Arrange these instances into their correct @ Exten Sl oha Ct!\fltles
positions on top of the instance joined_mc and give them instance names
myv_pl, inv._p2, inv_p3and inv_p4. For each of these instances select alphe'z fro‘m 1 Use ActionScript to add the following functionality to the jigsaw puzzle:
the Color option in the Properties panel and set the alpha value t6 09. This will : . ,
A o . e . . + Use the start button to show as well as hide the cornpleted puzzle. Objects = piece 1, piece 2,
make these instances invisible. The function of these invisible pieces is to act as _ piece 3, piece 4
the targets on to which other objects can be dropped. » Make the reset button functional. Istances = p1, p2, p3, pd
_ T + Have puzzle pieces return to their original position when not Properties =all properties of
Movie Crig- 5] 1975:-3(; of: Symbolli . . volerfAphar i TR G : complete_puzzle, all properties
B s T @ correctly placed. of the instances
Cwe 55 % FHRA] : : O < + Change the image on the puzzle. Methods = all of the methods
W0 v] : R . . . N , o . . of the dass, no methods
Y) | 2 Use the Flash online Help menu to locate all budlt-in classes and their properties, defined on instances
methods and event handlers,
e
g‘t) . . ™ 3 Extend the MovieClip class to create a library of custom visual effects (sub- +
Attach external ActionScript to objects dlasses of the MovieClip class).
External script
You have already written the ActionScript to control the movement and placement of e Other examples Properties =
the puzzle pieces pl1, p2, p3 and p4. This was the file saved as asscript.as. A Look at the jigsaw puzzle sample provided by Macromedia. The file can be found m:o ds =
1 Open the file jigsawfla (if it is not already open). B %nsade the Flash 2004 foldf:r on your har.d drive, 1.t is call.ed .mypuzzle. fla. What built- 3 all methods
Select each i fih . : in classes have been used in the production of this application? Have any custom defined
Z odlecteach instance ol the puzzle classes been created for use by this application? tnthis fle
pieces pl, p2, p3and p4in turn s -
and in the Actions panel attach the
following code: . ” 00P modular nature
#include “asscript.as” T "“‘”‘“,] :::“'!;‘;‘4“ . The modular nature of OOP enables you to .quickly and easily mix, match and extend
) . - L o ot ot Pvindbn 12 Fort1a 112 ~ho_al_plecesis 13 : i classes, objects, properties and/or methods. Once a script is written it can be attached to
#include is a compiler directive A e S P, 12 ' N : e
A & s ooz , e i = s any suitable object and act to define/redefine its properties and/or methods, extending
which is being used here to attach B ema, e) . B : . Objects = piece 1, piece 2
X P - : B the class to which the object belongs. Djects = piece 1, piece 2,
the module of code saved in the file | g D, <o ¥ @ romes : L K piece 3, piece 4
asscript.asto each piece. s TE %;(T‘"':EEE:L:‘:::,.M - Customn classes ¢an also be created to define the properties and objects to suit any Instances =p, p2, p3, p4
\. £ o T s e ' specific application. In the jigsaw puzzle project you attached a module of ActionScript P;"Pe“'!"st =all P:"Pe;'““
& Ouabhuttens - green i ¥ Acuand for plece2 : = .\ N I . . . R of comptete_puzzie, @
" B g : I il E (asscript.as) to the puzzle pieces (instances of a movieclip object). The script was 0 erfies ofrhe instance
The Movie Explorer presents a hierarchial representation D e ! Y M Actians for nieces : E . . . prop
) . . - iepio ! e gt act : : attached using the #include command and acts to determine the methods (drag, Methods = all methods
of all objects in the movie, Right shows the chjects B piceet, n2s * B plecea, <pax | il . . : : i
and their hiesarchy in the igsaw puzzle tself Farright [Acwonsrorpieces 3 . drop etc) of each puzzle piece. The properties of the puzzle pieces can be edited defined in the external
shows the ActionScri j i et I e D RS e S e o . : ; Asfile
ionScript attached to objects and frames, B T R T R S S independently of their methods. Try it for yourself.

48 lermonucroN 10 AcionScrips ASMIX04 ¥1.0 Copyright © 2005 Natcolt Publishing -'; {opyright © 2005 Natcol} Publishing Chapter 7: Programming techniques | 49

For any of the puzzle pieces enter Symbol edit mode and use the drawing tools to change

their appearance, The properties of this instance of the movieclip will be changed but its
methods will not.

‘This project also illustrates the event driven nature of ActionScript and the non-linear
nature of OOP. Puzzle pieces can be selected in any order the user determines, It is an
event (the pressing of the mouse button) that determines when the code is actioned.
Another event (if the puzzle piece has found its target or not) determines how the
movieclip object will respond once dragged and dropped onto the puzzle board.

In the second exercise you extended the methods of the MovieClip class by defining a
new method in an external script and attached it to a MovieClip object using linkage, The
external script created is available to any MovieClip object.

Applications of classes and sub-classes

E Using these techniques you could create classes which define a host of different objects

l and their respective specific properties and methods. For example, visual effects could be

: designed and implemented as a class, printing properties could be defined in a class which
is expressed when a user prints from a .swffile.

Classes can be used to represent a collection of similar objects. For example, you could
create a class of Animals which contains all of the properties and methods common to all
animals. You could then create sub-classes of the animal group which are representative of
specific types of animals, For example, Land dwelling animals and Ocean dwelling animals,
All the properties and methods common to all animals are defined in the Animal class.
Properties and methods specific to the type of animal are defined in the sub-classes.

Object-oriented design (00D)

The concepts of classes, objects, methods and properties are the tools of OOP. The
challenge is designing what you want to build with these tools. You have the hammer,

; nails and wood but the blueprint has to be drawn before you can begin to build. Object-
v oriented design is the ‘draw a blueprint’ phase of OOP.

Drum project

In the following exercises you will create an interactive web page using OOP. The page
will display three sets of drums, when you click on each set a different message will be
displayed. The completed project can be viewed by opening the supplied file Drum.swf.

The three drum images on the left hand side of the page are movieclips which operate
as buttons. When they are clicked content appears on the page.

The content linked to each of the images is also contained within B0
individual movieclips. The title on the page, drum, is another
movieclip.

- Magintorh HDUsers nicke DEdkbop Dium; Divm.sinl o i

All elements on this page have been loaded into, and are displayed
via, an empty container moviechip. All of the clips used are linked to
and controlled by external scripts.

If you open the file Drum.fla you will notice that the entire movie
contains just one empty frame. The properties and methods of all
of the movieclips are defined in external ActionScript files. The
script linked to the empty container movieclip is responsible for the
creation, initialising and layout of all other elements of the movie.

50 | Isonucrion e AconScapt ASMX04 V1.0 Copyright © 2005 Natcoll Publishing

