Build a Simple Poker Machine in Flash and ActionScript

Functions and Parameters, Rounding and Randomising

What is a function in ActionScript?

A function is a small program inside a larger application. It can be used repeatedly without having to write the code each time. You can give it different information each time, and it can then output a result or perform a set of actions based on that information.

The information you give a function is in the form of parameters.

What is a parameter?

A parameter is a piece of information necessary for the particular function to operate. A simple example is:

gotoAndPlay();

For this to work, we need to enter the parameter of a frame number or name in the parentheses (). Any parameters always go within the parentheses.

Example:

Take the example of searching for a house to rent: What basic factors do you take into consideration? They could be:

· The suburb the house is in

· The number of bedrooms
· The monthly rental
· Whether there is off-street parking
If this was put into ActionScript syntax it could look like:

function findHouse(suburb, bedrooms, rental, parking){

// the actions go here;

}

If you are in ActionScript 2.0, you could include a data type (eg, string, number or Boolean) after each parameter. This speeds processing time a little. The above function would then read:

function findHouse(suburb:String, bedrooms:Number, rental:Number, parking:Boolean){

// the actions go here;

}

If a function does not need any parameters it must be written with empty parentheses like this:

function myFunction(){

// the actions go here

}

An example of a function without any parameters is: stop();

How do you make a function work?

“Calling” a function means getting it to work – for that you give it the information it needs in the form of parameter values. In the function call each parameter is provided with a value, eg:

findHouse(“Essendon”, 3, 800, True), when called, could evaluate whether a house in Essendon with 3 bedrooms and off-street parking for $800 a month is worth considering.

Some functions will give you an answer (or a return). So, calling

findHouse(“Essendon”, 3, 800, True)might return a Boolean value of True (so Yes, I’ll have a look), whereas

findHouse(“Broadmeadows”, 2, 6000, True) is likely to return a False.

Other functions don’t give you a return; they just do their work.
For example, prevFrame() will simply take your timeline to the previous frame.

Rounding and Randomising

Two concepts that could appear on the exam are rounding and randomising.

Randomising refers to generating a random number.

AS has a built-in function (called a method) called math.random () which returns a random number between 0 and 1 only (eg, 0.32, 0.99, 0.03, 0.57.) It does not need any parameters.

Rounding refers to rounding-off a value to the nearest whole number, eg 5.4 would be rounded off to 5, and 6.9 would be rounded off to 7. A number ending in point five (.5) is rounded up to the next highest whole number, eg, 23.5 is rounded to 24.

AS also has a built-in function, or method, called math.round (x) which rounds off any number. It needs the number ending in a decimal, called x here, as a parameter, and returns the rounded whole number.

(There are two other similar methods, math.ceil(x) and math.floor(x), which are useful if you are creating a timer in a game.)

Project: build a simple poker machine

 We are going to create a simple poker machine program, where three images are randomly displayed when a button is pressed.

[image: image1.png]

Below are the images that appear in the boxes when the Try Your Luck button is pressed, the object of course being to get all three the same.

[image: image2.png]

 [image: image3.png]

 [image: image4.png]

 [image: image5.png]

[image: image6.png]

 [image: image7.png]

[image: image8.png]

 [image: image9.png]

1. Open poker_machine_end.swf to have a look at the end product.

2. Open poker_machine_start.fla. On the stage you will see three boxes as above. Their contents are actually instances (copies), of the movie clip imageChanger. They have been given instance names of left_mc, mid_mc and right_mc respectively. Each is currently stopped on the blank first frame.
 The instance of the button is called try_btn.

3. Press F11 (or use Window > Library, or use Ctrl+ L) to open the library. Select the imageChanger movie clip and play it through using the small Play arrow on the right.

There is also an invisible movie clip called win_mc, (you can see it as a small circle above the boxes). Win_mc is an instance of the winner sign movie clip, and only becomes activated when the three images match. (Play this movie too if you like).

These instance names are the ones used throughout the script.

The first step is to create a user-defined function which I called numGenerator that will eventually generate three sets of random, rounded whole numbers, one for each non-empty frame in each of the three movie clips. A value of 2 has been equated to frame 2, a 3 to frame 3, etc, for ease.

4. Open the Actions Pane (F9 or Window > Actions, if it is not visible)

5. Select the first frame of the Actions layer on the timeline and copy the following script into the Actions Pane:

function numGenerator(min, max) {

This function has two parameters, the minimum number and the maximum number between which we want random numbers generated. The actions inside the function are the rounding and randomising methods mentioned earlier. This process is put equal to a new variable I have called randomInteger.
6. Copy the next line below the one above:

var randomInteger = Math.round(Math.random()*(max- min) + min);

This last line takes a bit of explaining. Here is an example:

7. Add the following lines beneath the last. This will enable the function to produce, or return, a randomly generated integer (whole number):

return randomInteger;

 }

This next function, which I called changePics, causes the three pictures on the screen to change by sending the three movie clips, left_mc, mid_mc and right_mc to different random frames. changePics itself has no parameters.

8. Copy the following line below the last:

function changePics() {

Now a variable called showLeft is created, and put equal to a CALL on the function numGenerator. So the changepics function is calling the numGenerator function.

9. Copy the following line below the last:

var showLeft = numGenerator(2, 9);

The parameters are min of 2 and max of 9. These are chosen because we want left_mc to go to the frame with the same number as the number generated. That number is stored as the variable showLeft.

10. Copy the following line below the last:

left_mc.gotoAndStop(showLeft);

We now want to create two more variables like this one, one for mid_mc and one for right_mc.

11. Copy the following lines below the last:

var showMid = numGenerator(2, 9);

mid_mc.gotoAndStop(showMid);

var showRight = numGenerator(2, 9);

right_mc.gotoAndStop(showRight);

If all three pictures match, we want to announce that the user is a winner by activating the win_mc movie clip (currently invisible). We use the three variables we created, in an if statement. This statement uses and, (expressed as &&) to set the conditions under which the win_mc will play. It is not possible to do a three-way comparison between the three variables, so we do two at a time.

12. Copy the following lines below the previous ones:

if ((showLeft == showMid) && (showMid == showRight)) {

win_mc.gotoAndPlay(2);

We end the game by making the Try Your Luck button invisible so that the user cannot continue. The term _visible is a Boolean property and can be set only to true of false, i.e., visible or invisible. When the button is invisible it is also disabled. The curly bracket closes off the if statement.

13. Copy the following lines below the previous ones:

try_btn._visible = false;

}

The changePics function is now complete, so it needs to be closed off with another curly bracket.

14. Add this curly bracket below the previous lines:

}

The last step is to call the changePics function whenever the try_btn is pressed.

15. Copy in these last two lines, then press Control+Enter to see the program work:

try_btn.onPress = changePics;

Extension Activity:

Give your poker machine a social conscience and add a Money Spent counter.

You may have noticed an invisible layer called textbox. It holds an empty dynamic text box called money_txt. This is where the amount spent will be displayed.

16. Click on the cross under the eye symbol in the Layers area of the timeline. You should now see the textbox under the button,

You now need to create a new variable to count the money spent, and set it to zero. We will add to it each time the button is used.

17. Add this line below your last line of script:

var moneySpent = 0;

We want the visibility of the text box to zero (or False) so that it is not visible until the player wins.

18. Add this script below the last line:

money_txt._visible = 0;

We are about to create a function that adds 50c (or an amount of your choosing) to the moneySpent variable every time the button is released.

19. Add this script below the last line:

try_btn.onRelease = function(){

moneySpent += 0.50;

To create a message, we need to combine a string and the variable:

20. Add this script below the last line:

money_txt.text = "You spent $" + moneySpent +" !";

}

We want the textbox to be visible only when the three boxes hold the same image. You can set the _visible property to 0 or 1 instead of True or False, if you wish.

21. Replace the if statement about ten lines back with this version:

if ((showLeft == showMid) && (showMid == showRight)) {

win_mc.gotoAndPlay(2);

try_btn._visible = false;

/* The following line make the text box visible only when the user has won */

money_txt._visible = 1;

}

22. Now test your poker machine again. Don’t get addicted!

[You may be disappointed to find that the amount does not show with both decimal places for the cents, (eg, $9.5 instead of $9.50) but the scripting to fix this is beyond the scope of this lesson.]

Task: Write down two or three parameters you would need when you perform the function of making a cup of tea for someone you don’t know well. Hint: what are the questions you would ask them?

Write the function in AS:

Task: write a function call in AS for your tea-making function created above.

EXAMPLE: In a game I want to generate random numbers between a minimum of 10 and a maximum of 30, so that a random number of enemies between ten and thirty will appear on the screen.

Math.random, the function mentioned above, will only give me numbers between 0 and 1. To “stretch” these numbers out to cover the range of twenty whole numbers from 10 to 30, I have to multiply by 20 (that is, 30 - 10 or, more generally, max – min). This gives:

Math.random()*(max- min) The * is the multiplication symbol.

But this is not enough. It is only going to stretch the range of random numbers to between 0 and 20. The numbers now need to be “shifted up” to between 10 and 30. This is done by adding the min, 10. So now we have:

Math.random()*(max- min) + min

Still not finished – we need to round the numbers off to whole numbers (you can’t have 23.57 enemies!) so we apply the Math.round function to the whole thing, putting parentheses around the previous line, giving:

Math.round (Math.random()*(max - min) + min)

What you have learnt:

What parameters are, and how they are used

How to round and randomise, using in-built functions called methods

How to create and call a user-defined function

How one function can call another function

PixelEd
Page 1
24/05/2008

