F. THE GAME

Part1: Player Movement and Fire

Introduction
This part of the exercise covers controlling the movement of the player with the keyboard and firing

weapons,

Step 1: Adding the Spaceship to the Movie
Create a new layer and rename it Spaceship. Click in frame 4 on this layer and insert a blank
keyframe (F6). Draw your spaceship or import one you have created in another program. Select the

spaceship and then use Convert to Symbol (or F8) and make your spaceship a movie clip. Call the
movie clip instance mcSpaceship. Place the spaceship on the left part of the stage. The stage is at
800 pixels wide by 600 pixels high, has 12 frames per second and a background colour of black

Step 2: Moving the Spaceship

We need to detect which key or keys are being pressed using Key . 1sDown and then adjust the
spaceship x-position and y-postion accordingly. The code will be carried out in clip events, like
earlier exercises.

Explanation

A clip event is something that happens to a movie clip. Two of the most useful movie clip events
are 1oad and enterFrame which occur when a movie clip is loaded and when it enters a frame.
The code looks like this

onClipEvent (load) {

// code goes here

}

Any code contained between the curly brackets will be run when the movie clip is loaded or first
appears on the stage. The load event is useful in games for initialising variables and defining
functions, anything you want to do once at the start of a game - like setting the score to zero.
The enterFrame event occurs every time the movie clip enters a new frame. Code you want to
happen over and over again (eg detecting a collision) should be included in an enterFrame event.

Adding the Code
Add the code to the spaceship instance.

onClipEvent (load) {
moveSpeed=10;
}
onCilipEvent (enterFrame) {
if (Key.isDown (Key.RIGHT)) {
this. x+=moveSpeed;
}
if (Key.isDown (Key.LEFT)) {
this. x-=moveSpeed;
}
1f (Key.lsDown (Key.DOWN}) {
this. y+=moveSpeed;
}

if (Key.isDown (Key.UP)) {
this. y-=moveSpeed;
}

Explanation

This sets a variable called moveSpeed to 10 when the spaceship is first loaded. This variable will
control the number of pixels the player moves. By changing this one number, it changes the speed
in all directions.

The arrow keys control screen movement of the spaceship. The code is within an enterFrame
¢lip event, which means that every time the movie clip enters a new frame the code is run.
Effectively the code is run over and over again in a loop unless we remove or stop the movie clip.

i Copy of spaceship code is located at j:\Mmedia34\Flash\Save the Earth\Partl Step 2

Step 3: Adding the Laser Beam

What we will do is create a movie clip that looks like spaceship laser fire. Whenever the space bar
is pressed we will duplicate this movie clip, set its location to the same location as the spaceship
and then, within a loop, increase the movie clips x-position until it goes off the screen. We increase
the horizontal position so the laser fire moves from left to right — the direction the spaceship is
flying.

Add a layer and call it Laser Fire. Insert a blank keyframe (F6) in frame 4. Draw some laser fire eg
a couple of blue lines, a thin blue rectangle. Group the laser fire, then convert it to a movie clip
symbol naming it Laser Fire and call the instance mcLaser.

Hame:.::|Laser Fire

.. Cancel .

“Advarced .]f.t_';:l[e |

Adding the code
Select the spaceship movie clip and modify the code for onClipEvent (load) { by adding the
two lines shown.

onClipEvent (load) {
moveSpeed=10;
root.laser. visible=false;
laserCounter=1;

Explanation

The first of these new lines makes the laser invisible when the spaceship first loads. This will be the
source laser clip. Whenever the user presses the space bar this movie clip will duplicate to create a
new laser fire. This is the original movie clip and what gets fired across the screen every time the
space bar is pressed is a 'duplicate.

The second line is setting a counter variable equal to one. This is explained later.

Adding the code
Add the following code into the spaceship c1ipEvent. The following code goes directly after the
line clipEvent line.

1f (Key.isDown (Key.SPACE}) {
laserCounter++;
_root.mclLaser.duplicateMovieClip ("Laser"+laserCounter,

laserCounter) ;

. One line of code
_root["Laser"+laserCounter]. visible=true;

Explanation .

This code is run when the space bar is pressed. The code does three things. Tt adds one to the
laserCounter variable, it duplicates the Laser Fire movie clip and makes the new, duplicated
clip, visible. The laserCounter++; adds one to the variable 1aserCounter. The ++ means
'increase by one', so the line is the same as laserCounter=laserCounter+1.

The second line duplicates the movie clip and gives this new duplicated movie clip the name "Laser’
plus the value of the laser counter variable and sets the movie clips depth to the value of the laser
count variable. So if _root.laser.count isequal to 4 then the new movie elip will have the
name laser4 and the depth of 4,

The third line of code makes the new duplicated movie clip visible. It uses array style referencing
for objects and is especially useful if you want to reference a dynamically created object name.

Now add this code to the Laser Fire movie clip instance.

onClipEvent (lcad) {
laserMoveSpeed=20;
this._ y=_root.mcSpaceship. y+15;
this. x=_ root.mcSpaceship. x+85;

Explanation

The onClipEvent (load) code is associated with the Laser Fire movie clip so it will be run
when the laser movie clip first appears on the stage. The code is also run whenever the laser movie
clip is duplicated. When you duplicate a movie clip you duplicate the graphics, frames and all code
associated with the movie clip. Each new duplicated movie clip has its own copy of the original
movie clips code. And each duplicated movie clip runs its copy of the onClipEvent {load)
code when its loaded or duplicated.

The first line sets a new variable called 1aserMoves peed equal to 20. This will be the number of
pixels that the laser moves per frame ic the speed of the laser. The second line sets the y-position of
the laser (or duplicated copy of the laser) to the same y-position as the spaceship the +15 is used to
adjust the horizontal position of where the laser starts. The third line sets the x-position of the laser
(or duplicated copy of the laser) to the same X-position as the spaceship plus 85. We add 85 because
the x-position is for the centre of the spaceship and this make the laser appear at the front of my
spaceship. On your spaceship you may wish to adjust this number. You may also wish to change the
x- and y-positions using different numbers.

Adding the code
Now add this code under the code you just entered to the Laser Fire movie clip.

onClipEvent (enterFrame) |
this. x+=laserMoveSpeed;
if (this. x>800) {
this.removeMovieClip();
}
}

Explanation

This code moves the laser movie clip (or duplicated copy of the laser) to the right of the screen.
When the x-position gets greater than 800 it removes itself. The {irst line sets the x-position of the
laser movie clip (or duplicated copy of the laser) to the current x-position plus
laserMoveSpeed. As we set laserMoveSpeed to 20 this means that the X-position increases
by 20 every frame.

The next lines are an i f statement, which simple removes the laser movie clip if its x-position is
greater than 800.

LCopies of spaceship and laser code is located at j-\Mmedia34\Flash\Save the Earth \Part! Step 3

Part 2 - Scrolling Background

Introduction
This part of the exercise will cover adding scrolling backgrounds.

Step 1: Adding the Ground
The first thing we are going to do is to produce some ground that will scroll past as the spaceship
flys over it.

In Photoshop create an interesting graphic for the ground. As the stage in Flash was set to 800
pixels wide and 600 pixels high, the ground needs to be 800 pixels wide and an appropriate height,
with a resolution of 72dpi. Make sure that that the ground will tile horizontally - so ensure that the
ground starts and ends at the same height at each end of the graphic. Make the ground appear hiily.
Safe as a GIF file.

Example of ground

Import your ground graphic into your Flash library. Create a new layer and call it Ground. Insert a
blank keyframe (F6) and place the graphic from the library on to the stage. Convert the ground to a
movie clip called Ground. Select the Ground movie clip and name the instance name to Ground (as
shown below).

Ground
[4] Ground-Layer
Laser Fire

Spaceship
B T

Step 2: Scrolling the Ground
The ground will scroll to the left of the screen, which is achieved by gradually reducing the x-
coordinate of the ground movie clip.

We need two copies of the ground movie elip placed next to each other to achieve a smooth
scrolling effect. The second copy is sometimes referred to as a buffer. This ensures that the ground
always covers the stage. Instead of moving both of these movie clips to create our scrolling, what
we will do is put them inside another movie clip (which we will call mainGround) and then we can
move this parent movie elip instead of the two ground movie elips. In other words the mainGround
movie clip will contain the two copies of the ground and we will just move mainGround instead of
moving the two grounds individually.

The first thing we need to is to put the Ground instance inside another new movie clip.

Select the Ground movie clip and select Convert to Symbol. Give it the name mainGround and
choose movie clip as the behaviour. Call the Instance mainGround.

We now have the Ground movieclip inside of the mainGround movie clip. We will now duplicate
the Ground movie clip within the mainGround movie elip. Then we will be able to move the two
ground movie clips at once by just moving the parent mainGround movie clip. This will be less
work for the Flash player - as it only has to move one movie clip not two and hence will improve
the speed of the scrolling. In building flash games the speed of the flash player is very important, so
where-ever possible you should reduce the amount of code or movie clip manipulation that flash
has to do.

Adding the code
We are now going to add in the c1ipEvent code for the mainGround movie clip. Select the
mainGround and add the following code:

onClipEvent (lcad) {
Ground.duplicateMovieClip ("Ground2™, 1000);
GroundZ2._x = Ground. x+Ground. width;
groundStartx = this. x;
groundSpeed=10;

Expilanation |
This code is contained within a load ClipEvent, so it will be run when the mainGround is first .
loaded. The second line of the code makes a duplicate copy of the Ground instance of the movie |
clip and gives it the name Gground2 and a depth of 1000. |

The third line sets the x-position of Gground2 to the x-position of the original ground plus the width
of the ground. This has the effect of locating Gground?2 exactly to the right of the first ground
movie clip.

The fourth line creates a new variable called groundStartx which is equal to the x-position of
the the mainGround movie clip. The purpose of this variable is to store the start location of the
mainGround movie clip - we will use this variable later.

The fifth line groundSpeed=10; just sets up a new variable caﬂed groundSpeed with a fixed
value of 10. This will be the number of pixels the ground moves per frame.

Adding the code
Now add the following code , below the previous.

onClipEvent (enterFrame)
this. x-=groundSpeed;
if (this. x<= {groundStartx-Ground. width)) {
this. x=groundStartx-groundSpeed;

}

Explanation

This is contained within an enterFrame onClipEvent so it will be run over and over again.
Remember that the code within an enterFrame clipEvent is run everytime the movieclip enters
a new frame. The mainGround movie clip has just one frame - but it is still constantly entering that
one frame.

The second line: this. x-=groundSpeed; reduces the x-coordinate of the ground by the

value of groundSpeed. As we set groundSpeed to 10, then the code moves the mainGround to
the left by 10 pixels.

The third line checks to see if the mainGround has moved so far to the left that the first ground
movie clip is completely off the stage, if this is true then the fourth line sets the x-coordintate of the
mainGround such that it is positioned back where it started.

this. x isthe current x-coordinate of mainGround. Ground. width is the width of the
ground movie clip. groundStartx is the variable we set up earlier. When the game starts the
first ground exactly fills the stage. So this variable stores the x-coordinate at which the first ground
fills the stage.

So groundStartx - Ground. width is the start x-coordinate minus the width of the ground.
When the first ground is completely to the left of the stage its x-coordinate will be equal to its start
x-coordinate minus its width. At this point the second ground will be exactly filling the stage. When
we reset the mainGround back to its start position on the stage we have to also subiract the
groundSpeed because the mainGround still needs to be moving left by the amount specified in
groundSpeed.

You can now test the scrolling ground.

Copies of the spaceship, laser and mainGround code is located at j:\Mmedia34\Flash\Save the
Earth\Part2 Step 2

Step 3: Modifying the scrolling

In most space games the ground doesn't just keep scrolling. What happens is that the player starts
on the far left of the screen, when they get about a third of the way to the right of the screen they
stop moving right and the ground starts scrolling. This is also what happens in a lot of platform
games. This is what will happen in this game.

Most of the code for this will be in the spaceship movie clip events. As the spaceship location will
determine when the scrolling starts and stops,

Adding the code - when to start scrolling
Select the spaceship and within the onClipEvent (load) code, under the line
laserCounter=1; type the following:

scrollx= root.mainGround.ground. width/3;
scroliStart=false;

Explanation

The first line sets up a new variable, scrol1x. This variable will be the x-coordinate at which the
spaceship stops moving right and the ground starts scrolling. We've made it one third of the width
of the ground.

The second line sets up another new variable called scrollStart. This variable will be set to
true if the ground should be scrolling and false if the ground isn't scrolling.

Adding the code
If the spaceship has gone past scrol1x then it will stop moving right and the ground will start
scrolling. The code for the right arrow will have to be changed.

Replace the code for the right arrow movement of the spaceship with the following:

if (Key.isDown(Key.RIGHT}} {
if (this. x<scrollx) {
this. x+=moveSpeed;
} else |
scrollStart=true;

}

Explanation

What we have done is introduce an if statement. If this. x (the current x-coordinate of the
spaceship) is less than scrollx then the spaceship x-coordinate is increased - hence it moves
right. However if that isn't the case, then we set variable scrollStart to true and don't change
the spaceship x-coordinate,

Adding the code - When to stop scrolling
Now, we to need add in a whole new bit of onClipEvent code, dealing with a whole new event.
Underneath all of the clipEvent code for the spaceship (after the last }) type the following:

onClipEvent (keyUp) {
if (Key.getCode() == Key.RIGHT) {
scrollStart=false;
}
1

Explanation

This code introduces a new clipEvent, namely keyUp. This event occurs whenever the player
takes their finger off a key. Its useful here because what we want is for the ground to scroll while
you are holding the right arrow key down, but to stop scrolling when you take your finger off the
right arrow key.

The method Key. getCode () gives the last key that was released. So the 1 f statement see's if the
last key that was released was the right key and if that's true then it sets our variable
screollStart to false,

All we need is to add some code so that the ground actually stops scrolling when scrollStart is
false. Select the mainGround movie clip. Modify the mainGround code to read:

onClipEvent {enterFrame) ({
if (_root.mcSpaceship.scrollStart==true) {
this. z-=groundSpeed;
if (this. x<= {(groundStartx-Ground. width)) {
this. x=groundStartx-groundSpeed;
}

Explanation
An 1if statement has been added so that the code to move the mainGround only happens if the
variable scrollStart is true.

Finally, set the frame rate of your flash file to 25fps. A frame rate of 25fps should make the
scrolling look quite smooth. Test your movie, you should now find that the ground scrolls when you
reach a third of the way across the stage.

Copies of the spaceship, laser and mainGround code is located at j:\Mmedia34\Flash\Save the
Earth\Part2 Step 3

Step 4: Parallax scrolling

This game only has one scrolling background so far. To improve the look of the game a second
scrolling background will be added. Your second background could be some stars or distant
mountains. If you set the scrollSpeed for this background to a slower amount you will get an
effect known as parallax scrolling - it gives a feeling of depth to the game.

Try adding in the second scrolling background yourself. You will follow the same steps and use the
exact same code as you did for the ground. The only difference is that the graphic will be something
different (eg: Stars) and that the movie clip instance names will be different (eg: Stars and
mainStars). And the set the speed to a slower speed such as 4,

The code for you mainStars movie clip should be something like (assuming you have named your
movie as Stars) :

onClipEvent (load) {
Stars.duplicateMovieClip("Stars2", 1000);
Stars2. x = Stars. x+Stars. width;
starsStartx = this. x;
starsSpeed=4;
}
onClipEvent (enterFrame) {
if (root.mcSpaceship.scrollStart) {
this. x—=starsSpeed;
if (this._x<= (starsStartx-Stars. width)){
this. x=starsStartx-starsSpeed;

Copies of the spaceship, laser, mainStars and mainGround code is located at
J:\Mmedia34\Flash\Save the Earth\Part2 Step 4

Part 3 - Meteors and collisions

Introduction
This part of the exercise will cover meteors and collisions.

Step 1: Creating Meteors
First create a meteor to fire at. Easy to do in Photoshop or Paint,

For example
On the Main Timeline create a new layer and call it Meteor.

Import the meteor into the library. On Meteor layer insert the meteor. Select the meteor and
Convert it to a movie clip symbol, calling it Meteor. Call the instance Meteor].

The meteors

The game is going to follow a typical space shooting game structure. The meteors are going to
move across the stage from right to left. The player will need to either dodge or shoot the meteors.
If the player shoots a meteor it will explode. If a meteor collides with the player the game will be
over.

We will use duplicateMovieCip to create multiple meteors. However if all the meteors started
at the same Jocation the game would be very easy and boring, We need to introduce a random
element to the game. So all the meteors will start at the same x-position (to the right of the stage)
but will each have a random y-position. We will also make the meteor speed random, to add an
extra challenge to the game.

To write code for setting up a random start position and speed for the meteors. Functions are going
to be used.

What are Functions?

Functions let you group together lines of code. Often in game programming you want the same
code to be run in different parts of your game. For example, you might want to increase the players
score and play an animation if they collect a bonus. You might want the exact same thing to happen
if they complete a level. You could write the code for collecting the bonus and then copy and paste
it to the part of the game that handles completing a level. OR you could write a function to increase
the score and play the animation and call the function whenever you wanted the score increase and
animation to happen. The code for a function looks like this:

function scoreBonus () {
// code goes here

}

This is known as defining the function - it defines what the function is called and what code makes
up the function. scoreBonus is the functions name. Any code contained between the curly brackets
will be run when the function is called. 'Calling a function' means rupning a function and is done in
your code simply by typing the function name. So the code scoreBonus () ; will call the
function resulting in the functions code being run.

Note: Defining the function doesn't actually run the functions code. The code is only run when the
function is called.

Adding the code - a reset function

We are going to create a function to set up the start location and speed for the meteors.

Select the meteor movie clip. Type the following code:

onClipEvent (load) {
function reset () {
this. x=800;
this. y=Math.random()*500+1;
meteorSpeed=Math.random () *20+10;
this.gotoAndStop (1)
}

reset () ;

Explanation
The code defines the function called reset and then runs this function. The code is ail within a
load clip event so it will be run when the movie clip first loads.

The line function reset () { defines the reset function. The next three lines are the reset
functions code.

The line this. x=800; just sets the x-coordinate of the meteor to 800 (just to the right of the "
stage).

Math. random generates numbers between 0 and 1.

The line this. y=Math.random()*500+1; sets the y-coordinate of the meteor to a random
number between 0 and 499 ie from the top of the screen to five hundred pixels down (100pixels
above the bottom). meteorSpeed=random () *20+10; sets a ncw variable called
meteorSpeed to a value random between 10 and 30. This will be the number of pixels that the
meteor moves per frame.

- this.gotoAndStop (1) goes to the first frame of the meteor movie clip — it is only one frame
at the moment, but you will be adding more frames as the meteor explodes.

Finally the line reset () ; calls the function - which runs the code we defined above. We could
have just written the three lines of code and left out the function definition altogether. Well in the
next step you will see that we also want to call the reset function elsewhere in our code.

Step 2: Making the meteors move
Underneath the code from the previous step type the following code for the meteors enterFrame
clip event:

onClipEvent (enterFrame) |
if (_root.mcSpaceship.scrollStart){
this. x-=meteorSpeed+ root.mainGround.groundSpeed;
} else {
this. x-=meteorSpeed;
}
if (this. x<-10} ¢
reset{);
}
if (this.hitTest(root.mcSpaceship)){
_root.gotoAndStop (6);
1

Explanation

This code does two things; it moves the meteor across the stage by reducing its x-coordinate and it
resets the meteor if it has moved off the left edge of the stage. The first if statement checks to see if
our variable scrollStart is true.

If it is t rue then the meteors x-coordinate is decreased by

meteorSpeed+ root.mainGround.groundSpeed otherwise it is decreased by just
nmeteorSpeed. So if the ground isn't scrofling the meteor will be moved left by the random
number assigned to meteorSpeed. If the ground is scrolling the meteor's x-coordinate will be
decreased by meteorSpeed plus the speed at which the ground is scrolling. We need to do this to
ensure the movement looks realistic. If the ground started scrolling and the meteor just kept moving
at the same speed it wouldn't look right.

The second if statement checks to see if the meteor movie elip has moved off the left of the stage
(ie it's x-coordinate is less than -10). If this is true then the reset function is called. The reset
function will reposition the movie clip on the right of the stage and assign a new random speed and
y-coordinate. If you test your Flash file you should now have a meteor moving across the stage and
resetting itself after it moves off the left side of the stage.

Adding exfra meteors

One meteor isn't going to be a very challenging game, duplicateMovieClip will be used to
add some more meteors. We will put the code to duplicate the meteor in a new layer on the main
timeline.

Adding the code
On frame 4 of the Actions layer insert a blank keyframe (F6). Add the following code in this frame:

numMeteor=5;

for (i=2; i<=numMeteor; i++){
Meteorl.duplicateMovieClip("Meteor"+i, i+100);

}

Explanation

The first line creates a new variable called numMeteor and sets it to 5. This variable will be the
number of meteors on the stage at any one point in time, if you want to make the game harder just
increase this number.

The next three lines are a fox loop. The loop duplicates the meteor! movie clip instance.

For loops are used when you want to repeat some code a set number of times. For loops use a
counter, in this case its called i, which is typically increased by one each time Flash goes through
the loop.

Theline for (i=2; i<=numMeteor; i++) { doesanumber of things,

The i=2 sets the variable i equal to 2 when the loop starts the first time. The i++ increases 1 by
one everytime the loop is repeated. The i<=numMeteor keeps looping while i is less than or
equal to numMeteor, It stops looping when i is greater than numMeteor.

The result of this is that four duplicates of Meteor1 will be created, called Meteor2, Meteor3,
Meteor4 and Meteor5. If you increase the value of numMeteor then the number of duplicate
meteors will increase accordingly.

Add a blank frame to the Ground, Spaceship, Laser Fire, Meteor and Stars (or whatever you made
instead of Stars) layers in frame 5 (F5) and a blank keyframe (F6) on the Actions layer

In the blank keyframe on the Actions layer add the following code:

stop () ;

Explanation

This stops the main timeline. Even though the main timeline is stopped the laser, spaceship, stars,
meteors and ground movieclips are still playing. The timelines of movie clips run independent of
the main timeline, they will only stop if you specifically tell each one of them to stop.

If you test your flash file now you should have five meteors flying across the screen.

Copies of the main timeline, meteor, spaceship, laser, mainStars and mainGround code is located at
J:\Mmedia34\Flash\Save the Earth\Part 3 Step 2

Step 3: Collision detection

We want to detect when a laser hits an meteor and consequently make the meteor explode and
disappear. Similarly we want to detect when a meteor collides with the players spaceship, at which
point the game will end.

The spaceship, meteors and lasers are all movie clips. So we will use the hitTest.

Adding the code
For the code to detect the collision between the lasers and the meteors open the laser code and
change the enterFrame onClipEvent to the following:.

onClipEvent (enterFrame) {
this. x+=laserMoveSpeed;
if (this. x>800){
this.removeMovieClip () ;
t
for (i=1; i<= root.numMeteor; it++){
if (this.hitTest (Hroot{"Meteor"+i])){
_root.Score+=100;
_root["Meteor"+i].gotoAndPlay(Z);

}

Explanation

This code checks to see if this laser movie clip is colliding with any of the meteors. It usesa for
loop to check if this laser is colliding with each one of the meteor movie clips. If this is true it
increases the score by 100 and tells the associated meteor movie clip to goto and play its frame 2
(not made yet).

The first line sets up a for loop — for loops explained earlier. The second line isan 1 £ test. It
checks to see if this movie clip (ie the laser) is colliding with a meteor movie clip specified by
the code _root ["Meteor'+i]. As explained earlier, this is an array style referencing for a
movie clip. So when 1 is equal to 1 then root.["Meteoxr'+i] will evaluate to
_root.Meteorl when i is2 it will evaluate to _root.meteor2 and so on.

Ifthe hitTest is true then the next two lines are run. These lines deal with things to be set up in
the next step.

The line _root.Score+=100; increases a variable called Score by 100. We haven't set up this
variable yet, we will do it in the next step and you will see how easy it is to add a score to your
game.

The other line root ["Meteor™+i] .gotoAndPlay (2) ; tells the meteor that has collided with

the laser, to goto its frame 2. What we are going to do is put an explosion animation in the meteor
movie clip at frame 2.

The original laser - tidying things up
Modify the laser code as follows:

onClipEvent (enterFrame) {
if (this. name<>"mcLaser") {
this. x+=laserMoveSpeed;
if (this. x>800){
this.removeMovieClip () ;
}
for (i=1; i<= root.numMeteor; i-++){
if (this.hitTest({ root["Meteor"+i]}){
_root.score+=100;
_root["Meteor"+i}.gotoAndPlay(2);

Explanation

The original laser maovie clip instance (called mcLaser) is never removed. This is because the
removeMovieClip method only applies to movie clips that were created using
duplicateMovieClip. As the original laser was drawn by us it can’t be removed using
removeMovieClip. — which we don’t want to do anyway. If we removed the original laser we
wouldn't be able to duplicate new lasers from the original.

The added if staiement makes the movie clip check which version of the laser it is. If it is the
original version (the one with the name mcLaser) then the code to move, remove and check for
collisions will not be run. The <> means not equal to.

Step 4: Scores and explosions
We are now going to add in a score display, some graphics to show the meteor exploding and some
collision detection code which will detect if the player’s spaceship has hit a meieor.,

Score Display

On the main timeline create a new layer called Score, Insert a new blank keyframe in frame 4.

On this layer create a dynamic text box, you can put it anywhere on the screen. Stretch the text box
out so it is wide enough to display the score (as shown below). Change the text from Static Text to
Dynamic Text, with an appropriate colour font — you can type some numbers so you can see what
it will look like (these numbers will not show in the finished game).

dynamic text

Give the text’s variable name (Var) the name Score.

Now, still on the main timeline select the fourth frame of the Action layer and add the following
code underneath the existing code:

Score=0;

Click in frame 5 of the Score layer and insert a frame (F5).

Explanation
This simply sets up the score variable and sets it to zero at the start of the game.

Exploding meteors!
Now we want to add in an explosion animation for the meteor movie ¢lip when it is hit by a laser.
Open the Meteor movie clip (Double click the Meteor! movie clip on the stage).

You should have one layer with one frame containing
the meteor graphic. Rename the layer Explode. On
that layer create four, or so, new keyframes and
modify the graphic to depict the meteor exploding (as
shown below). Select the last frame of this layer and
insert a blank keyframe.

Create a new layer and call it Actions. Select the first frame of this layer and type the following
code:

stop () s

Now insert a blank keyframe on the last frame of the dcrions layer (above the blank key frame on
the Explode layer) Type the following code in this frame:

stop () ;

Explanation
We stop the meteor movie clip on frame one because we don't want the explosion animation to play
until the meteor is hit by a laser.

We have previously added the code to play the animation from frame 2 when the laser collides with
the meteor movie clip.

We stop the movie clip after the explosion on the last frame because there are no graphics on this
frame. The movie clip still exists and will still keep moving across the stage until it reaches the left
hand side and is reset. However as there are no graphics being displayed Flash won’t detect
collisions between the movie clip and the spaceship or the lasers once the explosion animation has
finished.

Step 5: Detecting a coliision between the spaceship and the meteor
We will add some code into the Mefeor] movie clip instance to test if it is colliding with the
player’s spaceship and if this is true then main timeline will move to a game over section.

Player / meteor collision detection and resetting after exploding
Modify the Meteorl movie clip instance code to the following:

onClipEvent (load) {
function reset (}{
this. x=800;
this._ y=Math.random()*500-100;
meteorSpeed=Math.random() *20+10;
this.gotoAndStop (1)
}
reset ()
}
onClipEvent (enterFrame) |
if (root.mcSpaceship.scrollStart) |
this._x~mmeteor8peed+hroot.mainGround.groundSpeed;
} else {
this. x-=meteorSpeed;
}
if (this. x<-10) {
reset () ;
}
if (this.hitTest(_root.mcSpaceship)){
_root.gotoAndStop (3);

}

Explanation
This is an i £ statement that checks if this movie clip (ie the meteor) is colliding with the
spaceship. If this is true, then the main timeline is instructed to goto and stop at frame 6.

We have set up the meteor mevie elip to play an explosion animation and stop on its empty frame if
it is hit by a laser. When it moves off the left edge of the stage and is reset, it effectively becomes a
new meteor. It is the same movie clip, but seems like a new meteor emerging from the right side of
the stage. So we reset it back to the first frame by using this.gotoAndStop (1) ; as the last

line of the reset function.

Game Over

You may want to do an animation sequence for the end of the game, but to keep this exercise as
simple as possible our end sequence will be one frame with the message Game Over, a play again
button and the final score.

On the main timeline you will add an extra frame to the end of every layer of the game frames as
instructed. So you will have a 6 frame movie.

Insert a blank keyframe (F6) on frame 6 of the Meteor, Laser, Spaceship and Actions layers.
The main timeline stops on frame 5 while the game is playing, When the game is over it will move
to frame 6. We inserted blank keyframes on the laser, spaceship and meteor layers because we don't

want these movie clip still visible at the end of the game,

On the main timeline add in a new layer called Game Over and insert a blank keyframe on the
sixth frame of this new layer.

On the Game Over layer in the new keyframe add some text on the stage saying game over. It
doesn't matter what font or size or colour - just pick something you like.

Create a button that allows you to play again by retuning to frame 4 on the main time line.

Test the finished game.

Copies of the main timeline, meteor, spaceship, laser, mainStars and mainGround code is located at
J:\Mmedia34\Flash\Save the Earth\Final

G. EXTENSIONS/IMPROVEMENTS/EXPERIMENTATION

While we have built a simple space flying game, many of the core elements of the game could be
used in a variety of action games. Almost all action games involve player movement, meteor
movement, collision detection and scoring, which were all implemented in this game,

Some suggestions on how the game could be improved:
To keep the exercise from being too long, the game was kept as simple as possible. However there
are quite a few improvements that could be made to the game.

o Make the game harder by increasing the speed of the meteors or the number of meteors or
limiting the laser fire.

» If you noticed the game performing slowly or if movement was a little jerky, this would be
because the graphics and stage in the game are quite large. Try reducing the size of the stage
and game graphics.

e At the moment the player can move off the top, bottom and left of the stage. Limit the
spaceship to the stage.

o Add in player lives so instead of the game ending when the player collides with a meteor, the
player just loses a life. You will neet 10 add in a lives variable and reduce this by one when
the collision occurs. When the lives is equal to zero the game will be over. It is similar to the
Scoring feature,

o Add sound effects eg laser firing, neetzor exploding.

o The lasers currently keep on travelling even when they hits a meteor. You could change this
by using the same code that is used 1o remove a laser when it goes off the stage to remove the
laser when it hits a meteor.

References
David Doull Building Games in Flash 5 Paxis 1. 2 and 3 from www. flashkit.com
Game source and text developed from these three tutorials.

	ste-fin.pdf
	ste-final.pdf
	ste1.pdf
	save the earth2

	ste2

	save the earth5

