

�

All gambling situations involve an element of uncertainty. This makes them extremely suitable for simulation on the computer. In fact, some actual gambling situations (the ‘Tabaret’, for instance) are simply computer programs themselves.

The two Projects in this chapter simulate familiar situations - the Tattslotto draw, and the operation of a Poker Machine. To write these programs, you will need to use the arrays, loops and random number generation discussed in the previous chapter.

Project 7:		‘Tattslotto”

	1.	Investigation

The Tattslotto draw each week is a simple random process, generating six (eight, if you count the supplementaries) integers in the range 1 to 45. The Tattslotto draw uses a machine to select balls from a ‘barrel’, and hence the numbers generated are all different.

	Problem Statement:	To simulate the Tattslotto draw by creating a program to generate six different integers between 1 and 45 inclusive. These numbers will be displayed on a suitable Form.

	2.	Design

The User Interface

The Form for this application simply needs six spaces to display the six numbers generated, a button to click to perform the draw, and a Quit button.

If the six text boxes are set up as a control array, placing the selections into them for display can be done with a minimum of effort in a loop.

Gambling establishments, and gambling machines, are notoriously colourful - shiny, sparkling, and very bright (some would even describe them as garish). Give some thought to providing suitable labels, and to setting appropriate colours for the Form and its controls.

A suitable Form might look like this:

��	Labels			Text Boxes

������

���

					Command Buttons

Program Operation

You will need six variables to store the six numbers drawn. If you use an array of variables, you can do all of the processing in loops, and save programming time and effort. An array of variables must be declared in the general declarations section of a program.

The only events requiring code are the Click events for the two buttons:

	Event:	The user clicks the Draw The Numbers button

	Actions:	1.	The computer generates a random number in the range 1 - 45 and stores it in memory.

		2.	The computer generates another random number in the range 1 - 45. If it is different from the first number, it is stored in memory. If not, another number is generated.

		3.	Another random number in the range 1 - 45 is generated. If it is different from each of the previous numbers, it is stored in memory; if not another number is generated.

		4.	Step 3 is repeated until there are six different numbers stored.

		5.	The numbers are displayed on the Form.

	Event:	The user clicks the Quit button

	Actions:	1.	The program finishes.

	3.	Production

This is not a difficult user interface to produce; the program code is the trickiest part. You are being asked to devise an algorithm for the process of selecting six different numbers in the range 1 - 45 inclusive. There are many different algorithms for this task; one of them has been outlined on the previous page as the ‘Actions’ to be taken when the Draw The Numbers Button is clicked. The algorithm given here is not the best, nor the most efficient, for the task. Give some thought to a better one.

	4.	Evaluation

Testing The Program

1.	Run the program several times. Are the numbers all different each time?

	Run the program until the number 1 appears, and the number 45 appears (to ensure that the full range of numbers is being used). How many runs did this take? Did you get any numbers outside the range?

2.	How many such runs would you need to do to be certain that the program always produced six different numbers? Can you ever be certain that it will always produce six different numbers?

3.	Run the program a large number of times, and record the number of times each of the numbers 1, 2, 3, 4, 43, 44, 45 occurs. How many time would you expect each one to occur? Do the results agree with your expectations?

Improving The Program

Add two more boxes, and generate the two supplementary numbers as well.

How much extra code did you have to enter?

How much longer did the program take to generate the set of 8 numbers, compared to the time to generate 6 numbers? Was the difference noticeable?

Evaluating The Program

If you followed the algorithm given in the notes, you would have found that you needed to add a considerable amount of extra code to get the two supplementary numbers generated. Also, the computer may have taken noticeably longer to come up with the set of numbers.

The problem is that the more numbers you generate, the more tests the computer has to carry out to makes sure that the new number is different from all of the others. Also, the more numbers are being selected, the higher the probability that the new number has already been generated, particularly when generating the last few numbers.

An efficient algorithm for this process would work more like the actual Tattslotto barrel - once a number is drawn, it is no longer in the barrel, and cannot be drawn again. Implementing this sort of process on the computer takes a little bit of ingenuity (and some hard work), but is worth doing. Such an algorithm has a great variety of uses, not just in selecting a set of numbers from a larger set. For instance, the same algorithm can be used to rearrange a set of number into a random order (called a permutation of the set), which is useful as a way of ‘shuffling’ the numbers (to be used in simulating a card game, for example).

Project 8:		“The Poker Machine”

	1.	Investigation

Poker machines have several wheels, each of which has a number of symbols around the circumference. When the machine is operated, the wheels spin around, then eventually come to rest. One symbol from each wheel is visible in a set of windows. Prizes are paid if all windows show the same symbol, or if all but one window show the same symbol. The legalisation of poker machines in Victoria is a fairly recent development. The machines are very popular with gamblers, and generate enormous amount of income for their owners.

	Problem Statement:	To simulate the operation of a simple poker machine, and use it to investigate how such machines can produce large profits.

This simulation will be a simplification of the real machines, having fewer wheels, and fewer symbols on each wheel.

	2.	Design

The User Interface

The Form for this simulation requires some boxes to display the results of a spin, a button to click to operate the machine, and a Quit button.

The symbols to be displayed on the Form must also be stored on the Form, but they will not be visible top the user.

A suitable Form might look like:

������			Label					Image Controls

��������

		Image Controls

Program Operation

The only code required goes into the Click procedures for the two buttons.

	Event:	The user clicks the Spin The Wheels button

	Actions:	1.	The computer generates a random number in the range 0 to 3

		2.	The symbol with this index number is placed as the image in the first image control.

		3.	Step 2 is repeated four more times, until each ‘window’ has a symbol in it.

	Event:	The user clicks the Quit button

	Action:	1.	The program finishes.

Note that in this program, two (or more) of the ‘windows’ can contain the same symbol, unlike the “Tattslotto” program, where the six numbers al had to be different.

You can get the commands repeated by using a For ... Next loop.

	3.	Production

Set the five Image controls for the ‘windows’ into a control array. Have the four symbols in a control array as well, and set their Visible property to False.

The symbols used in the example above come from the icon files misc34.ico, misc35.ico, misc36.ico, and misc37.ico from the C:\vb\icons\misc directory.

	4.	Evaluation

Testing The Program

You should run the program a large number of times, and verify that the random number generation is, in fact, random.

Run the program a large number of times, and count how many times all five of the symbols are the same, and how many times four of the five symbols are the same. Are these results what you would expect in this situation?

�Improving The Program

1.	Add a Text Box to the Form.

	Modify your program to detect whether there are four or five symbols the same, and have a suitable message appear in the Text Box.

2.	Have the program allocate a sum of money to the user at the start of the program. For each click of the Spin The Wheels handle, subtract $1 from this amount. Every time there are four suits the same, have a prize added to the user’s stock of money. When there are five suits the same, have a bigger prize given to the player. Have the player’s current amount of money displayed in the Text Box.

	What value should the two prizes be? Why?

	Can you arrange the prize values so that the user eventually loses all of her money? How?

3.	Add more ‘wheels’ to the machine, and more symbols to the wheels.

	Which results should be awarded prizes? How much should these prizes be?

4.	The program outlined above has each symbol appearing once on each wheel. Investigate having some of the symbols more common than others, so that you can vary the number and amount of prizes.

page � PAGE �80�	Programming In Visual Basic

	Two Gambling Simulations	page � PAGE �81�

Chapter

10

Two Gambling Simulations

Command Buttons

