
Exercise 6

VB.NET Database with Objects
You are required to use 2 forms in this project. The first to view the data, the second to make changes like add, delete and edit records.

The steps in this exercise are intended to combine exercise 4 and 5 together.

Aim:

1. To use Exercise 4 and develop further to save to interact with and save to an Access database file

2. You are to load Exercise 4 and add the following design features:

a. Each mypart object will be a record in your Access database

b. Create an Access database file with a table called “items” and 5 fields each with the names and types identical to the ones in Exercise 4. Eg. Stock should be of type number , cost of type currency and id and name of type text . dateStamp should be of type date. These are the user friendly data types used in Access and not necessarily the same ones you used in VB.NET such as int or double.

c. Add 3 records to the database table “(AAA99) - 99 within the rules for id, and stock and cost. That is , id is to be the pattern “(AAA99) – 99” , stock to be an integer greater than or equal to 0, cost to be a decimal value greater than $0.00
d. You are to use the form created in Exercise 4 for viewing the data and navigating through the database. The fields should not be editable. That is, you can’t change data in the database from the first form. Why ? Because the validation will not be implemented from the first form.
e. You are to create a second form with the same text fields as the first form, but this will be for adding a new record or “mypart” or modifying an existing entry in the database.
f. You will save or discard your changes from the second form. If data is saved, it will appear on the first form and become part of the database.

g. You will be guided on how to do this in the following instructions

Exercise

1. Open MS Access, create a new file (call it firstobjectdb.mdb), and create a table. In design mode add the fields as stated above so the table looks like the following:

[image: image1.png]Microsoft Access

Ble Edt Vew Iwet Ioos Window telp

=R KeY) I =Y

Fied Name Dota Type
T Toxt

name Text

stock. Number

cast Currency.

datestamp Date/Time.

2. Save the table as items, add 3 records according to the rules of our object as discussed in above in item 2(c) under Aim , save, close the file, copy it to the bin folder in your VB.NET project.
3. Open the firstobject project in VB.NET and load the form Form1.

4. Copy the form under the Solution Explorer and rename the second form Form2. Adjust the text on the top of Form2 as it will still show as Form1 and any other minor details.

[image: image2.png]< b || solution Explorer - frstobject & X

—

‘Solution firstobject’ (1 project)
=) frstobject
&) References
9 assanblyinfo.sb
Ostasett o
orm. ot
Formz.ab

[parth

al e is £

5. To load Form2 from Form1 you will need the following steps:
i. At the top of Form1, declare a new instance of Form2 as follows:

Dim SubForm As New Form2

ii. To load Form2 from Form1, add a button and place the following code behind the button

‘ this loads Form2

SubForm.Show()

iii. To hide or close Form2 , use the “Me.hide()” command.

6. You will need to create a link to the firstobjectdb.mdb file for both forms. Follow the steps in Exercise 5, in creating an OleDbDataAdapter, select the New Connection button, click on provider and select the Jet 4.0 OLE DB Provider under the provider tab. Click Next, then select the database file firstobjectdb.mdb by browsing to the bin folder to select it. Click on Test Connection to ensure the connection is made. Then click OK
7. Continue , click Use SQL Statements, Next, Query Builder , select each field and continue until completed.

8. You need to Generate a Dataset , again follow the steps in Ex 5 if necessary.

9. The key difference between Ex 5 and this is that you will connect each TextBox to the appropriate field in the items table in the firstobjectdb.mdb database.

10. To connect the textboxes on each form to the database you will need to use the property DataBindings, Text, down arrow, select the dataset , and then the field name that the textbox should link to . Eg the id textbox should link to the id field, the name textbox to the name field and son on.
11. Create a button and label it “Load” and behind it, enter the following code:

 DataSet11.Clear()

 OleDbDataAdapter1.Fill(DataSet11)

12. Try to run your project. As a minimum you should get the first form to load, and when you press “Load” it should fill the textboxes with the first record in the table items retrieved from the firstobjectdb.mdb database file.

13. You will need navigation buttons to step forward to the next record, step back to the previous record and to jump to the first and also the last records in your file.
The code needed for navigation is as follows:

 At the top of the form enter

Dim cmItems As CurrencyManager

Also move the code behind the Load button and add to the code behind the loading of the form as below

 On loading the form enter the following code

cmItems = CType(BindingContext(dataset11, “items”), CurrencyManager)

 ‘ the following 2 lines removed from the button Load and added below

DataSet11.Clear()

OleDbDataAdapter1.Fill(DataSet11)

To step forward one record the code behind the button is:

cmItems.Position =cmItems.Position + 1

To step backward one record the code behind the button is:

cmItems.Position =cmItems.Position - 1

To step backwards to the first record the code behind the button is:

cmItems.Position =0

To step forwards to the last record the code behind the button is:

cmItems.Position =cmItems.Count – 1

Create the 4 buttons closely together, label First, Previous, Next, Last and place all the code above.

14. Run your form. It should load, display the first record and the 4 buttons should each do their job unless logically not possible. Eg. There should be no change if you are at the last record and want to step forwards 1 record or jump to the last record because you are already there.
15. You can also delete the Load button and add a label that shows which record you are up to.
16. Create a label called lblPosition.
17. Create a Function as follows

Private Sub DisplayPosition()

 lblPosition.Text = “record: “ & cmItems.Position + 1 & “ of “ & cmItems.Count

End Sub

18. To update your label lblposition, add the following line at the end of the code behind each of :
Loading the form and using any of the 4 navigation buttons:

 DisplayPosition()

‘ this will update your label when you load the form, and when you move forwards of backwards with the buttons.

---- We are nearly there -----

19. One problem we have is any change made on the form is restricted to the data set and not the database . This needs to be synchronised with a new function

Private Sub UpdateDb()

If DataSet11.HasChanges Then

Dim NumberChanged as Integer

NumberChanged = OleDbAdapter1.Update(dataset11, “items”)

End If

20. The AddChanges event is “True” if there are any changes to any of the rows in the data set. These changes can be additions, deletions and edits. The update command writes the new contents of the data set back to the database via the data adapter. The update command also records the number of changes that have been made. In this case we are storing this in the variable “NumberChanged”. You could choose to give some feedback to the user in this regard if you wished.

21. Create new button and name it btnUpdate and place a command in the click event of this button that calls UpdateDb()

22. One problem we have is how to add a new record or delete a record. Remember this will be done from Form2 and not Form1.
To add a record it is simply

cmItems.AddNew()

23. To remove a record it is

‘ Only delete if there is a record to delete

If cmItems.Count > 0 Then

cmItems.RemoveAt(cmItems.Position)

End If

You may care to place a MessageBox to warn the user before the actual delete takes place

If cmItems.Count > 0 Then

Dim Answer As Integer

Answer = MsgBox(“Do you really want to delete this record?”, vbYesNo, “Delete Record “)

If Answer = vbYes Then

cmItems.RemoveAt(cmItems.Position)

End If

End If

24. Now the challenge is to put all this together and see if you can make it work. Again, if something does not work after checking a number of times, it may be due to a typing mistake so don’t stress and ask for help

25. You will need to clean up different parts of the program, like the datestamp field etc.

Mr Krozian[image: image3.png]

PAGE
1
Kevork Krozian 2005
Forest Hill College
Acknowledgment is made to both VB.NET for Education by Adrian Jansons and

An introduction to VB.NET by Graeme Summers

