
Year 12 Information Technology Systems--- Forest Hill College

Exercise 4 - Creating user defined objects
ADVICE: Before you start this exercise I strongly advise to follow the videos, 06VB1 and 06VB2 in this package. After listening and following the videos you can then proceed with the exercise. Acknowledgment is made to LearnVisualStudio.Net
Background: Create a class that represents a spare part object with the appropriate data variables. The class should have methods for manipulating these fields (get/set). The part class should have a OuttoString method that returns a string representation of the data in the class. This introduces more Java: classes, Object class (and its methods such as OuttoString), methods, etc.

Aim:

1. Create a class that represents a number of stock item parts where each stock item has the fields:

id

name

stock

cost

date stamp

Each stock item is to have an id with pattern ("AAA-00") and each instance of a stock item is to have a date stamp stored with it.

2. Use methods to both set the data (setX) and to return the data (getX). It is good Object Oriented programming practice not to access fields directly but via get/set methods. This has the effect of hiding the data. There are several good reasons for this. The main reasons are based on the use of inheritance to redefine the behaviour of an Object. You do not need to understand why you must use get/set methods; only that it is good practice.

3. The key validation segments of code such as ID Code Checker, Convert a Double with Format Trapping are to be isolated in a Boolean function for checking data input before processing further.

ADVICE: Before you start this exercise I strongly advise to follow the videos, 06VB1 and 06VB2 in the videos posted on the moodle site. After listening and following the videos you can then proceed with the exercise OR you can dive straight into the exercise if you prefer.
Exercises:

A. Create a new class called “Part” (think of it as a part for a car, or other piece of machinery and the data related to it, such as part ID, name of the part, number in stock, cost of the item) , with the appropriate data fields and methods setId, setName, setStock, setCost, setDateStamp, getId, getName, getStock, getCost, getDataStamp, and finally a toString method.

B. Display data if valid

C. Extension

Exercises --- Details:

A.
Create a new class called Part, with variables and methods set/get and toString.

1. Using the steps in earlier exercises create a new project called firstobject.

2. The first requirement is a form for entering the data. You will now create a number of buttons and other features along the same theme as Ex 2 to further extend your knowledge of VB.NET programming.
3. Label and TextBox called idLabel and idTF.

4. Label and TextBox called nameLabel and nameTF

5. Label and TextBox called stockLabel and stockTF

6. Label and TextBox called costLabel and costTF

7. 4 buttons named setDataButton, getDataButton, printDataButton and ExitButton with text as in the diagram on the next page.

8. 2 labels, titleLabel and statusLabel with settings as below.

[image: image1.png]= B
Object Access Form
1o fnothing Narme foming

stock |nothing Cost frothing

SetData GetData Exit

9. Once the GUI is set up it is necessary to set up the new class “Part”.

10. Click on File, Add a New Item, select Class, package is firstobject, class name is Part. Accept default settings. OK.

11. Go to the source of the new class part and after the heading type in :

public class Part {

Private id As String

Private name As String

Private stock As Integer

Private cost As Double

Private dateStamp As Date
Private partMASK As String = "AAA-99"
 ‘ Method called upon creation of an instance - the constructor.

 public Part()
 ‘establish initial values for part here if you wish

 ‘Initialise date stamp

 setDateStamp(new Date()).

 ‘ Methods to get and set the data item “id”
Public Property idmethod()

 Get

return id

End Get

Set(ByVal value)

id = value

End Set

End Property

 ‘ Methods to get and set the data item “name”

Public Property namemethod()

 Get

Return name

End Get

Set(ByVal value)

name = value

End Set

End Property

 ‘ Methods to get and set the data item “stock”

Public Property stockmethod()

 Get

Return stock

End Get

Set(ByVal value)

stock = value

End Set

End Property

 ‘ Methods to get and set the data item “cost”

Public Property costmethod()

 Get

Return cost

End Get

Set(ByVal value)

cost = value

End Set

End Property

‘
‘ Constructor that is called when a new instance of the ‘class Part is created.

' Method called upon creation of an instance - the constructor.

‘ We want to “stamp “ our object with the current date/time at ‘creation time

Public Sub New()

dateStamp = Now()

MessageBox.Show(“Constructor called”)

End Sub

‘ OuttoString() method to retrieve data all at once

Public Function OuttoString() As String

Return id & name & stock & cost

End Function
12. You will now need to declare a variable of type Part. We will declare this variable in the main Form header. Declare a Part variable by inserting the following code just after the header line:

Inherits System.Windows.Forms.Form

Public mypart As New Part

The public keyword makes the object mypart available to all buttons and all areas of the project.

13. The next step is to take input via the screen (GUI) and update the fields in the part object using the set methods. This has to be done after checking that the data in each of the JTextFields on the screen is in a valid format (i.e., id is in the form (“AAA-00”), cost is a double and stock is an integer). This will be linked to the Set Data button.

14. Copy the code for the events linked to the Set Data button as follows:

 void setDataButton_actionPerformed(ActionEvent e) {

Dim flag As Boolean = True

Dim idTemp As String = idTF.Text

Dim nameTemp As String = nameTF.Text

Dim stockTemp As String = stockTF.Text

Dim costTemp As String = costTF.Text

If Not (idCodeFormatCheck(idTemp, "AAA-00")) Then

flag = False

End If

Try

mypart.idmethod = idTF.Text

mypart.namemethod = nameTF.Text

mypart.stockmethod =Integer.Parse(stockTF.Text())

mypart.costmethod = Double.Parse(costTF.Text())

Catch

flag = False

End Try

If flag = False Then

MessageBox.Show("Error in Data Entry - Try again")

15. Try to remove any syntax (grammar or rule of a programming language).

16. Before you run the SET button, you need to write a function that compares the idCode to “AAA-00” meaning 3 capital alphabetic characters, a dash and then 2 digits between 0 and 9 inclusive.

17. To write the function , refer back to Exercise 2 and 3 and see if you can remember how you wrote the same function in that exercise. Here is a hint, the header or definition of the function was
Public Function idCodeFormatCheck (ByVal code As String, ByVal pattern As String) As Boolean

18. Once you have the function written that works out whether the id entered is valid, try to run the program entering valid data which should not give any errors.

19. If all goes well without an error message, try to run the program and produce some errors.
20. When errors are produced, the problem is that you don’t know which data item caused the error. Improve your program so you can help the user to see which data item caused the error in each of the 3 possible areas of invalid data – idcode value that is not AAA-99, stock value that is not integer, cost value that is not double.

21. The opposite of setting the data in our part object from the contents of the GUI is to synchronise the GUI with the contents of our part object. This is the purpose of our Get Data button. Copy the code for the events linked to the Get Data button as follows:

idTF.Text = mypart.idmethod

nameTF.Text = mypart.namemethod

stockTF.Text = mypart.stockmethod

costTF.Text = mypart.costmethod
22. Add one more button called Print Data and let us write the code for it. When we press the Print Data button we want the contents of the part object to be written to the console. This can be easily achieved using the toString method that we declared in the Part class. The toString method returns the string representation of the object. We use the Java println method to write a string to the console. Add the following code:

 ‘ Use a message box to output each of the values in the object mypart

MessageBox.Show(mypart.idmethod & mypart.namemethod) and so on

OR

MessageBox.Show(mypart.OuttoString())

23. Also add another button that clears all the Textboxes. Thereafter , you can quickly check if the get button works without having to clear each textbox manually.

B. Display data if valid
24. Test the program with test data for part id (checked against pattern AAA-99), name (no check as it’s a string), stock (no check yet, but should be checked for integer format), and cost (checked against double format).

25. Carefully study the code, as there are some very powerful Object Oriented programming features within.

26. Check that the Set Data, Get Data and Print Data buttons work correctly.

27. Improve the OuttoString() method to reformat the output in your own style.

C. Extension

1. The code works for valid cost (double) and stock (integer) values, however as it stands it will also accept negative costs (e.g. -$34.32) as well as negative stock values (-4, -12). What can you do to trap for this also? Carry out the change in your program and test it.

2. The line

Private partMASK As String = "AAA-99"

in the class Part has not been used but would be useful as it could hold the pattern for a part id and could be called from the line

If Not (idCodeFormatCheck(idTemp, "AAA-00")) Then

flag = False

End If

by using

If Not (idCodeFormatCheck(idTemp, mypart.partMASK) Then

flag = False

End If
Try to do make this change, what happens? How can it be fixed?

Hint: It has to do with the private declaration of partMASK

Change the part id acceptable string and test again.

3. Add another data item to the object Part – for example :

Supplier of type String eg. BHP, Bunnings, Harvey-Norman and incorporate the changes into your program.

nameLabel and nameTF

statusLabel

titleLabel

idLabel and idTF

stockLabel and stockTF

costLabel and costTF

Data declaration in the class Part. Note that these variables are declared to be private. This means that they can only be accessed by code within the class.

Property is declared as Public. This means the property is available from other areas of the project

Each has a GET and a SET method. This is to retrieve (GET) and store (SET) the data in the object called part.

Retrieve values from the GUI objects.

Set each of the TextBox components text property with the data in part.

setDataButton

getDataButton

exitButton

Double and Integer parsing to convert from string to Double and Integer

Kevork Krozian (2005
Page 1
Forest Hill College

Acknowlegment is made to LearnVisualStudio.Net for the free learning videos

