

Flash ActionScript 2.0 Overview

Flash ActionScript 2.0 overview

FLASH ACTIONSCRIPT 2.0 OVERVIEW...4

TERMINOLOGY..4
Events...4
Operators..4
Keywords ..5
Classes ...5

SYNTAX RULES ...5
Case sensitivity...6
Dot Syntax ..6
Curly { } brackets ..6
Parentheses () ...7
Quotation Marks " ...7
Semicolons ; ...7
Comments // ...8
Indenting, spacing...8

DATA TYPES ...8
String data type...9
Number data type ...9
Boolean data type...9
Object data type..10
movieClip data type ..10
Null data type..10
Undefined data type..10
Void data type...10

VARIABLES ...11
Trace() ..11
Scoping and declaring variables ...11
Strict data typing ...12

MANIPULATING VALUES IN EXPRESSIONS...13
Comparison operators ..13
String operators ..14
Logical operators ..15
Bitwise operators ..15
Equality operators...15
Assignment operator =..16
Repeating actions, loops...17

USING FUNCTIONS ..17
Defining a function ..17
Passing parameters to a function ...18
Returning values from a function ..18

F Schlatt [Jul-06] 2

Flash ActionScript 2.0 overview

Calling a user defined function..18
VIEWING THE ACTIONS PANEL..20

USING THE ACTIONS PANEL/ACTIONSCRIPT EDITOR22

WHERE TO PLACE ACTIONSCRIPT? ..22
THE ACTIONS PANEL ...22

F Schlatt [Jul-06] 3

Flash ActionScript 2.0 overview

Flash ActionScript 2.0 overview
ActionScript is a programming language similar to the JavaScript
programming language. ActionScript is the language you use to add
interactivity to Flash applications, whether your applications are simple
animated movies or more complex applications.
The ActionScript language has grown and developed since its introduction
several years ago. Flash introduces new language elements that implement
object-oriented programming. Because these language elements represent a
significant enhancement to the previous ActionScript language, they represent
a new version of ActionScript: ActionScript 2.0.

 Applications developed with ActionScript 2.0 require Flash Player 6 or
later.

The default Publish setting for new files created in Flash is ActionScript 2.0. If
you plan to modify an existing FLA file to use ActionScript 2.0 syntax, ensure
that the FLA file specifies ActionScript 2.0 in its Publish settings. If it does not,
your file will compile incorrectly, although Flash will not generate compiler
errors.

Terminology
As with all scripting languages, ActionScript uses its own terminology. The
following list provides an introduction to some ActionScript terms.

Events
Events occur during the playback of a movie. There are predefined events
that the Flash player gives you access to, such as the act of moving or
clicking the mouse on(mouseDown). Every script is triggered by an event, and
your movie can react to numerous events, everything from a button being
released to text changing in a text field to a sound completing its playback,
and more.

on(mouseDown) {
 // your script goes here
}

Operators
Operators are symbols that calculate a new value from one or more values.
For example, the addition (+) operator adds two or more values together to
produce a new value. Operators include a number of symbols (=, <, >, +, -, *,
&&, etc.) and are used to connect two elements in a script in various ways.
For example:

var taxPercent:Number = .06;

- assigns a numeric value of .06 to the variable named taxPercent using
the assignment operator, =.

amountA < amountB;

- evaluates if amountA is less than amountB.
value1 * 500;

- multiplies value1 times 500.

F Schlatt [Jul-06] 4

Flash ActionScript 2.0 overview

The operators >, <, >=, <=, ==, !=, ===, are known as comparison operators.

Keywords
Keywords are words reserved for specific purposes within ActionScript syntax.
As such, they cannot be used as variable, function, or label names. For
example, the word on is a keyword and can only be used in a script to denote
an event that triggers a script, such as on (press), on (rollOver), on (rollOut),
and so forth. Attempting to use keywords in your scripts for anything other
than their intended purpose will result in errors. Here are some other
keywords: break, case, class, continue, default, delete, do, dynamic, else, extends,
finally, for, function, get, if, implements, import, interface, in, instanceof, new, null,
private, public, return, set, static, switch, this, throw, try, typeof, undefined, var, void,
while, and with.

Classes
“Classes of objects”, or “object classes”, or simply “classes”, are phrases used
to describe sets of objects with similar characteristics and behaviours. The
terms upper class, middle class, or working class describe groups of people
that fit a certain belonging due to their finances.
In the real world, animals belong to the animal class, persons belong to the
person class, and cars belong to the car class.

♦ Objects
Objects are the key to understanding object oriented programming. In object
oriented programming, an object is just as real as an object in the real world.
For example, a dog, or a car are objects that exist in the real world.
Objects are made up of properties and methods. Each object is an instance
of a particular class, has its own name, properties and methods.
Real world objects share two characteristics with objects in the computer
world. They are:

♦ Properties
 Properties are attributes (characteristics) that describe an object. For
example, dogs have properties such as their name, colour, breed, and
if they are hungry.

♦ Methods
 Methods describe an object’s behaviours. Dog behaviours would be
barking, fetching, and wagging their tails.

Computer objects are modelled after real world objects in that they also have
specific properties and behaviour.

Syntax rules
As with all programming languages, ActionScript has syntax rules that you
must follow to create scripts that can compile and run correctly.

F Schlatt [Jul-06] 5

Flash ActionScript 2.0 overview

Case sensitivity
ActionScript 2.0 is a case sensitive language, which means variable names
that differ in case, such as book and Book, are considered different from
each other. Therefore, it is important to follow consistent capitalisation
conventions, to make it easy to identify names of functions and variables in
ActionScript code.
When you publish files for Flash Player 7 or later, Flash implements case
sensitivity whether you are using ActionScript 1 or ActionScript 2.0. This
means that keywords, class names, variables, method names, etc are all case
sensitive.

Dot Syntax
Dots (.) are used within scripts in a couple of ways. One is to denote the
target path to a specific Timeline. For example,

_root.myCar_mc.frontWheel_mc

- points to a movie clip on the main (_root) Timeline named myCar_mc,
which contains a movie clip named frontWheel_mc.

Because ActionScript is an object-oriented language, most interactive tasks
are accomplished by changing a property (characteristic) of an object or by
telling an object to do something (invoking a method). When changing a
property or when invoking a method, dots are used to separate the object's
name from the property or method being worked with. For example, movie
clips are objects; to set the rotation property of a movie clip instance named
wheel_mc, you would use the following syntax:

 wheel_mc._rotation = 45;

Notice that a dot separates the name of the object from the property being set.
To tell the same movie clip instance to play, invoking the play() method, you
would use this syntax:

 wheel_mc.play();

Once again, a dot separates the name of the object from the method invoked.

Curly { } brackets
ActionScript event handlers, class definitions, and functions are grouped
together into blocks of code by using curly brackets { }. Generally, anything
between opening and closing curly brackets signifies an action or set of
actions the script needs to perform when triggered. Think of curly brackets as
saying, "As a result of this {do this}." For example:

 on (release) {

 //set the cost of the mug

 var mugCost:Number = 5;

 //set the local sales tax percentage

 var taxPercent:Number = .06;

F Schlatt [Jul-06] 6

Flash ActionScript 2.0 overview

 }

The preceding could be viewed as a sentence that says this: As a result of
releasing the button, create two variables called mugCost and taxPercent.
You can put the opening bracket on the same line as your declaration or on
the next line.
for (var i=1; i<=10; i++){
 sum += i;
}

or
for (var i=1; i<=10; i++)
{
 sum += i;
}

You can check for matching curly brackets in your scripts using syntax and
punctuation checking.

Parentheses ()
Parentheses are used in various ways in ActionScript. For the most part,
scripts employ parentheses to set a specific value that an action will use
during its execution. The sample script that tells the myCarr_mc movie clip
instance to go to and play Frame 50:

myCar_mc.gotoAndPlay (50);

If the value within parentheses is changed from 50 to 20, the action still
performs the same basic task (moving the myCar_mc movie clip instance to a
specified frame number). It just does so according to the new value.
Parentheses are a way of telling an action to work based on what is specified
between the parentheses.

Quotation Marks "
Quotation marks are used to denote textual data in the script, called a string.
Because text is used in the actual creation of the script, quotation marks
provide the only means for a script to distinguish between instructions (pieces
of data) and actual words. For example, Kelly (without quotes) signifies the
name of a piece of data. On the other hand, "Kelly" signifies the actual word
"Kelly."

myCar_mc.gotoAndPlay ("racing");

- this action moves the movie clip myCar_mc to a label named racing.

Semicolons ;
An ActionScript statement is terminated with a semicolon, as shown in the
following examples:
var row:Number = 0;

If you omit the terminating semicolon, Flash still compiles your script
successfully. However, it is good scripting practice to use semicolons because
it makes your code more readable.

F Schlatt [Jul-06] 7

Flash ActionScript 2.0 overview

Semicolons are required within for loops, as shown in the following
example:
//a for loop that adds numbers 1-10
var sum:Number = 0;
for (var i=1; i<=10; i++) {
 sum += i;
}

Comments //
Comments are useful for tracking what you intended to do and for passing
information to other developers if you work in a collaborative environment or
are providing samples. Even a simple script is easier to understand if you
make notes as you create it.
To indicate that a line or portion of a line is a comment, precede the comment
with two forward slashes (//):
//a for loop that adds numbers 1-10

for (var i=1; i<=10; i++) {//a for loop

Comments can be of any length without affecting the size of the compiled file,
and they do not need to follow rules for ActionScript syntax or keywords.
You can also create multi-line comments using the following syntax:

 /* everything between
 here is considered
 a comment */

Indenting, spacing
Although not absolutely necessary, it is a good idea to indent and space the
syntax in your code. For example, the following:

 on (release) {
 var mugCost:Number = 5;
 }

executes the same way as this:
 on (release) {
 var mugCost:Number = 5;
 }

However, by indenting the second line of code, it is easier to read. A good rule
is to indent anything within curly braces to indicate that the code within those
braces represents a code block or chunk of code that is to be executed at the
same time. The AutoFormat feature of the Actions panel takes care of most of
this formatting.

Data types
A data type describes a piece of data and the kinds of operations that can be
performed on it. That data is stored in a variable. You use data types when
creating variables, object instances, and function definitions.

F Schlatt [Jul-06] 8

Flash ActionScript 2.0 overview

String data type
A string is a sequence of characters such as letters, numbers, and
punctuation marks. You enter strings in an ActionScript statement by
enclosing them in double (") quotation marks.
A common way to use the string type is to assign a string to a variable. For
example, in the following statement, "L7" is a string assigned to the variable

var favouriteBand_str:String = "U2";

You can use the addition (+) operator to concatenate or join two strings. The
following expression includes a space after the comma:
var greeting_str:String = "Welcome, " + firstName;

To include a quotation mark in a string, precede it with a backslash character
(\). This is called escaping a character. There are other characters that cannot
be represented in ActionScript except by special escape sequences.

Number data type
The number data type is a double-precision floating-point number. Numeric
operators add, subtract, multiply, divide, and perform other arithmetic
operations.

Operator Operation performed
+ Addition
* Multiplication
/ Division
% Modulo (remainder of division)
- Subtraction
++ Increment
-- Decrement

The most common use of the increment operator is i++ instead of the more
verbose i = i+1. You can use the increment operator before or after an
operand. In the following example, age is incremented first and then tested
against the number 30:
if (++age >= 30)

This process is known as a pre-increment. In the following example, age is
incremented after the test is performed:
if (age++ >= 30)

This process is known as a post-increment.

Boolean data type
A Boolean value is one that is either true or false. ActionScript converts the
values to 1 and 0 when appropriate. Boolean values are most often used with
logical operators in ActionScript statements that make comparisons to control
the flow of a script.

F Schlatt [Jul-06] 9

Flash ActionScript 2.0 overview

Object data type
An object is a collection of properties. Each property has a name and a value.
The value of a property can be any Flash data type. This lets you arrange
objects inside each other, or nest them. To specify objects and their properties,
you use the dot (.) operator. For example, in the following code, hoursWorked is
a property of weeklyStats, which is a property of employee:

employee.weeklyStats.hoursWorked

The ActionScript MovieClip object has methods that let you control
movie clip symbol instances on the Stage. This example uses the play() and
nextFrame() methods:
mcInstanceName.play();
mc2InstanceName.nextFrame();

movieClip data type
Movie clips are symbols that can play animation in a Flash application. They
are the data type that refers to a graphic element.

Null data type
The null data type has only one value, null. This value means no value, that is,
a lack of data. The following example demonstrates how you can use null to
test if form fields currently have form focus:
if (Selection.getFocus() == null) {
 trace("no selection");
}

Undefined data type
The undefined data type has one value, undefined, and is automatically
assigned to a variable to which a value has not been assigned, either by code
or user interaction.
The value undefined is automatically assigned. You use the undefined data
type to check if a variable is set or defined. This data type lets you write code
that executes only when the application is running, as shown in the following
example:
if (init == undefined) {
 trace("initializing app");
 init = true;
}

If your application has multiple frames, the code does not execute a second
time because the init variable is no longer undefined.

Void data type
The void data type has one value, void, and is used in a function definition to
indicate that the function does not return a value, as shown in the following
example:
//Creates a function with a return type Void
function displayFromURL(url:String):Void

F Schlatt [Jul-06] 10

Flash ActionScript 2.0 overview

Converting data types
Converting numeric to a string (ASCII):

_root.score_txt.text = String(totalScore);

Converting strings to a number:
Number("468") returns 468
Number("23.45") returns 23.45
parseInt("13.3") returns 13
parseFloat("13.3") returns 13.3

Variables
A variable is like a container in computer memory that is given a unique name
and holds a value, for example, a number or text. Using ActionScript, the
content of variables can be created, changed, and retrieved. Data types
describe the kind of information a variable can contain. The ActionScript data
types are, for example, string, number, Boolean, object, movieClip, function,
null, and undefined.
Variable names are case-sensitive: firstname and firstName are not the same.
In the following example, the variables on the left side are assigned different
types of values:

var x:Number = 5;
var name:String = "Lulu";
var myColour:Color = new Color(mcInstanceName);

It is a good idea always to assign a variable a known value the first time you
define the variable. This is known as initialising a variable and is often done in
the first frame of the SWF file.

Trace()
To view the value of a variable, you use the trace() statement to send the
value to the Output window. For example, the action

trace(hoursWorked)
trace("game over " + duration)

- displays the text

sends the value of the variable hoursWorked to the Output panel. You can also
check and set the variable’s values in the Debugger in test mode.

Scoping and declaring variables
A variable’s scope refers to the area in which the variable is known and can
be referenced.

♦ Time line variables
Timeline variables are available to any script on that timeline. To declare
timeline variables, use the var statement and initialise them in any frame in the
timeline; the variable will be available to that frame and all following frames,
as shown in the following example:
//initialised in Frame 1, it is available to all frames

F Schlatt [Jul-06] 11

Flash ActionScript 2.0 overview

var x:Number = 15;

♦ Local variables
To declare local variables, use the var statement inside the body of a function.
A local variable declared within a function block is defined within the scope of
the function block and expires at the end of the function block.

var firstName:String = "Fred";

♦ Global variables
Global variables and functions are visible to every timeline and scope in a
project. To create a variable with global scope, use the _global identifier
before the variable name. For example, the following code creates the global
variable myName:
_global.myName = "George"; // correct syntax

Strict data typing
ActionScript 2.0 enables to explicitly declare the object type of a variable
when you create it, which is called strict data typing. Strict data typing offers
several benefits at compile time.

 Because data type mismatches trigger compiler errors, strict data
typing helps you find bugs in your code at compile time and prevents
you from assigning the wrong type of data to an existing variable.

 During authoring, strict data typing activates code hinting in the
ActionScript editor.

 Strict data typing increases performance at runtime. By indicating the
type of data a variable will hold, the Flash player saves a lot of time, in
comparison to having to figure out on its own the data type of a
variable.

 Using strict typing also helps to ensure that you do not attempt to
access properties or methods that are not part of an object’s type.

To assign a specific data type to an item, you specify its type using the var
keyword, as shown in the following examples:

 strict typing of variables
var x:Number = 7;
var myVariable:String = "Hello";
var birthday:Date = new Date();

 strict typing of parameters

function welcome(firstName:String, age:Number){
}

 strict typing of parameter and return value

function square(x:Number):Number {
 var squared:Number = x*x;

F Schlatt [Jul-06] 12

Flash ActionScript 2.0 overview

 return squared;
}

If you are implementing strict data typing, make sure you are publishing files
for ActionScript 2.0.

Manipulating values in expressions
An expression is any statement that Flash can evaluate and that returns a
value. You can create an expression by combining operators and values or by
calling a function.
Operators are characters that specify how to combine, compare, or modify the
values of an expression. The elements that the operator performs on are
called operands. For example, in the following statement, the addition (+)
operator adds the value of a numeric literal to the value of the variable fido;
fido and 3 are the operands:
fido + 3

When two or more operators are used in the same statement, some operators
take precedence over others. ActionScript follows a precise hierarchy to
determine which operators to execute first. For example, multiplication is
always performed before addition; however, items in parentheses ()] take
precedence over multiplication. So, without parentheses, ActionScript
performs the multiplication in the following example first:
total = 2 + 4 * 3;

The result is 14.
But when parentheses surround the addition operation, ActionScript performs
the addition first:
total = (2 + 4) * 3;

The result is 18.

Comparison operators
Comparison operators compare the values of expressions and return a
Boolean value (true or false). These operators are most commonly used in
loops and in conditional statements. In the following example, if the variable
score is 100, a certain function is called; otherwise, a different function is
called:
// call one function or another based on score
if (score > 100){
 highScore();
}
else {
 lowScore();
}

In the following example, if the user’s entry (a string variable, userEntry)
matches their stored password, the play bar moves to a named frame called
welcomeUser:
if (userEntry == userPassword) {

F Schlatt [Jul-06] 13

Flash ActionScript 2.0 overview

 gotoAndStop("welcomeUser");
}

Uppercase characters precede lowercase characters in alphabetical order, so
“Eagle” comes before “eagle” If you want to compare two strings or characters
regardless of case, you need to convert both strings to upper- or lowercase
before comparing them.

The following table lists the ActionScript comparison operators:
Operator Operation performed
< Less than: Returns true if the left operand is

mathematically smaller than the right
operand. Returns true if the left operand
alphabetically precedes the right operand (for
example, a < b).

> Greater than: Returns true if the left operand
is mathematically larger than the right
operand. Returns true if the left operand
alphabetically follows the right operand (for
example, b > a).

<= Less than or equal to: Returns true if the left
operand is mathematically smaller than or the
same as the right operand. Returns true if the
left operand alphabetically precedes or is the
same as the right operand.

>= Greater than or equal to: Returns true if the
left operand is mathematically larger than or
the same as the right operand. Returns true if
the left operand alphabetically follows or is
the same as the right operand.

<>
!=

Not equal: Returns true if the operands are
not mathematically equivalent. Returns true if
the operands are not the same.

== note the two equal signs Equality: Tests two expressions for equality.
The result is true if the expressions are equal.

=== Strict equality: Tests two expressions for
equality; the strict equality operator performs
the same as the equality operator except that
data types are not converted. The result is
true if both expressions, including their data
types, are equal. Does not apply to strings.

String operators
The addition (+) operator has a special effect when it operates on strings: It
concatenates the two string operands. For example, the following statement
adds "Congratulations," to "Donna!"
"Congratulations, " + "Donna!"

The result is Congratulations, Donna! If only one of the addition (+) operator’s
operands is a string, Flash converts the other operand to a string. ActionScript
treats spaces at the beginning or end of a string as a literal part of the string.
The comparison operators >, >=, <, and <= also have a special effect when
operating on strings. These operators compare two strings to determine which

F Schlatt [Jul-06] 14

Flash ActionScript 2.0 overview

is first in alphabetical order. The comparison operators compare strings only if
both operands are strings. If only one of the operands is a string, ActionScript
converts both operands to numbers and performs a numeric comparison.
Uppercase characters precede lowercase in alphabetic order, so “Eagle”
comes before “eagle.” If you want to compare two strings or characters
regardless of case, you need to convert both strings to upper- or lowercase
before comparing them.

Logical operators
Logical operators compare Boolean values (true and false) and return a third
Boolean value. For example, if both operands evaluate to true, the logical
AND (&&) operator returns true. If one or both of the operands evaluate to
true, the logical OR (||) operator returns true. Logical operators are often used
with comparison operators to determine the condition of an if statement. For
example, in the following script, if both expressions are true, the if statement
will execute and the myFunc() function will be called:
if (i > 10 && i <50){
 myFunc(i);
}

The following table lists the ActionScript logical operators:
Operator Operation performed
&& Logical AND: Returns true only if both the left and right operands are true.
|| Logical OR: Returns true if either the left or right operand is true. The sign is

SHIFT Backspace (\)
!operand Logical NOT: Returns the logical (Boolean) opposite of the operand. The logical

NOT operator takes one operand.

Bitwise operators
Bitwise operators internally manipulate floating-point numbers to change them
into 32-bit integers. The exact operation performed depends on the operator,
but all bitwise operations evaluate each binary digit (bit) of the 32-bit integer
individually to compute a new value.
The following table lists the ActionScript bitwise operators:

Operator Operation performed
& Bitwise AND
| Bitwise OR
^ Bitwise XOR
~ Bitwise NOT
<< Shift left
>> Shift right
>>> Shift right zero fill

Equality operators
You can use the equality (==) operator to determine whether the values or
references of two operands are equal. This comparison returns a Boolean
(true or false) value. If the operands are strings, numbers, or Boolean values,

F Schlatt [Jul-06] 15

Flash ActionScript 2.0 overview

they are compared by value. If the operands are objects or arrays, they are
compared by reference.

 It is a common mistake to use the assignment operator to check for
equality. For example, the following code compares x to 2:

if (x == 2)

In that same example, the expression
 if (x = 2)

is incorrect, because it does not compare the operands; it assigns the value of
2 to the variable x.
The strict equality (===) operator is similar to the equality operator, with one
important difference: The strict equality operator does not perform type
conversion. If the two operands are of different types, the strict equality
operator returns false. The strict inequality (!==) operator returns the opposite
of the strict equality operator.
The following table lists the ActionScript equality operators:

Operator Operation performed
== Equality
=== Strict equality
!= Inequality
!== Strict inequality

Assignment operator =
You can use the assignment (=) operator to assign a value to a variable, as
shown in the following example:
var password:String = "Sk8tEr";

You can also use the assignment operator to assign multiple variables in the
same expression. In the following statement, the value of d is assigned to the
variables a, b, and c:
a = b = c = d;

You can also use compound assignment operators to combine operations.
Compound operators perform on both operands and then assign the new
value to the first operand. For example, the following two statements are
equivalent:
x += 15;
x = x + 15;

The assignment operator can also be used in the middle of an expression, as
shown in the following example:
// If the flavour is not vanilla, output a message.
if ((flavour = getIceCreamFlavour()) != "vanilla") {
 trace ("Flavour was " + flavour + ", not vanilla.");
}

This code is equivalent to the following code, which is slightly easier to read:
flavour = getIceCreamFlavour();
if (flavour != "vanilla") {

F Schlatt [Jul-06] 16

Flash ActionScript 2.0 overview

 trace ("Flavour was " + flavour + ", not vanilla.");
}

The following table lists the ActionScript assignment operators:
Operator Operation performed
= Assignment
+= Addition and assignment
-= Subtraction and assignment
*= Multiplication and assignment
%= Modulo and assignment
/= Division and assignment
<<= Bitwise shift left and assignment
>>= Bitwise shift right and assignment
>>>= Shift right zero fill and assignment
^= Bitwise XOR and assignment
|= Bitwise OR and assignment
&= Bitwise AND and assignment

Repeating actions, loops
ActionScript can repeat an action a specified number of times or while a
specific condition exists. Use the while, do..while, for, and for..in actions to
create loops.
//a for loop that adds numbers 1-10
var sum:Number = 0;
for (var i=1; i<=10; i++) {
 sum += i;
}

Using functions
Flash has built-in functions that let you access certain information and perform
certain tasks, such as getting the version number of Flash Player that is
hosting the SWF file getVersion().
You can define functions to execute a series of statements on passed values.
Your functions can also return values. After a function is defined, it can be
called from any timeline, including the timeline of a loaded SWF file.
Functions that belong to an object are called methods.

Defining a function
As with variables, functions are attached to the timeline of the movie clip that
defines them, and you must use a target path to call them. As with variables,
you can use the _global identifier to declare a global function that is available
to all timelines and scopes without using a target path. To define a global
function, precede the function name with the identifier _global, as shown in the
following example:
_global.myFunction = function (x:Number):Number {
 return (x*2)+3;
}

F Schlatt [Jul-06] 17

Flash ActionScript 2.0 overview

To define a timeline function, use the function statement followed by the name
of the function, any parameters to be passed to the function, and the
ActionScript statements that indicate what the function does.
The following example is a function named areaOfCircle with the parameter
radius:
function areaOfCircle(radius:Number):Number {
 return Math.PI * radius * radius;
}

Passing parameters to a function
Parameters or arguments are the elements on which a function executes its
code. For example, the following function takes the parameters/arguments of
initials and finalScore:
function fillOutScorecard(initials:String,
finalScore:Number):Void {
 scorecard.display = initials;
 scorecard.score = finalScore;
}

When the function is called, the required parameters must be passed to the
function. The function substitutes the passed values for the parameters in the
function definition. In this example, scorecard is the instance name of an
object; display and score are properties of the object. The following function
call assigns the value "JEB" to the variable display and the value 45000 to the
variable score:
fillOutScorecard("Fred", 45000);

The parameter initials in the function fillOutScorecard() exists while the function
is called and ceases to exist when the function exits. If you omit parameters
during a function call, the omitted parameters are passed as undefined. If you
provide extra parameters in a function call that are not required by the function
declaration, they are ignored.

Returning values from a function
Use the return statement to return values from functions. The return statement
stops the function and replaces it with the value of the return statement.
For example, the following function returns the square of the parameter x and
specifies that the returned value must be a Number:
function sqr(x:Number):Number {
 return x * x;
}

Calling a user defined function
You can use a target path to call a function in any timeline from any timeline,
including from the timeline of a loaded SWF file. If a function was declared
using the _global identifier, you do not need to use a target path to call it.
To call a function, enter the target path to the name of the function, if
necessary, and pass any required parameters inside parentheses. For

F Schlatt [Jul-06] 18

Flash ActionScript 2.0 overview

example, the following statement invokes the function sqr() in the movie clip
mathLib on the main timeline, passes the parameter 3 to it, and stores the
result in the variable temp:
var temp:Number = this.mathLib.sqr(3);

The following example uses a path to call the initialize() function that was
defined on the main timeline and requires no parameters:
this.initialize();

The following example uses a relative path to call the list() function that was
defined in the functionsClip movie clip:
this._parent.functionsClip.list(6);

F Schlatt [Jul-06] 19

Flash ActionScript 2.0 overview

Viewing the Actions Panel
The Action panel is where the Flash designer gains control of a Flash
document, by allowing you to create and edit actions for an object or frame.
To use the Actions panel, first select an object on the stage, or select a frame
on the Timeline, then click the Window menu, and then click Actions. Scripts
can be typed directly into the Actions panel using the Script pane, or
augmented by using a list of installed Actions in the Toolbox.

To open the Action panel, press F9 or select Window > Development Panels
> Actions.

• Toolbox. Supplies a list of all installed actions, organized into a folder.

• Script pane. Enter the Actions into the Script pane.

• Script Navigator pane. Gives reference to all the Scripts in the active
movie.

• Current Script tag. Indicates which script is being edited.

• Pin Script. Adds a tab for a selected script.

• Options menu. Contains options that control and format the Actions
panel.

• Add Statement. Lets you add script elements to the current action.

• Find, and Find and Replace. Searches the active script.

• Insert Target Path. Inserts a specific target clip into the action.

• Check Syntax. Checks the current action for syntax errors.

• Auto Format. Cleans up the script by auto indenting.

• Show Code Hint. Gives you hints to the syntax of the action, as you
type.

• Debug Options. Let's you add or remove breakpoints into the action,
which causes Flash to pause on the specified line of code.

• Script Assist. Script assist provides a visual interface for editing scripts
that includes automatic syntax completion and parameter descriptions.

• Help. Provides online help.

F Schlatt [Jul-06] 20

Flash ActionScript 2.0 overview

F Schlatt [Jul-06] 21

Flash ActionScript 2.0 overview

Using the Actions Panel/ActionScript Editor
Where to place ActionScript?

You control a Flash movie by placing actions, that is, instructions or
commands written in the ActionScript language, at key places in the movie.
You can place actions:

 On frames. Actions attached to frames are called frame actions.
- Frame actions are executed when the play bar reaches the frame
that contains the action. Frame actions are executed automatically
and do not require input from the user.

 On buttons, or movie clips. These actions are called object actions.
- A button action is carried out when the user interacts in the form of a
mouse event, such as clicking or rolling over the button.

- A movie clip action can be carried out in one of two ways,
depending on how you define the action: either by an event in the
movie, such as a movie clip loading, or by the user clicking the
movie clip, which is a mouse event.

Attaching actions to a button called myButton_btn looks like the following:
on (release) {
 //do something here
}

Placing actions with the same purpose in a frame looks like the following:
myButton_btn.onRelease = function() {
 //do something here
};

Regardless of where you place the code, the functionality is identical.

The Actions panel
You add actions to Flash movies by using the Actions panel.
To open the Action panel, press F9 or select Window > Development Panels
> Actions.

 To add an action, you must first select the movie element to which you
want to attach the action.

- A frame. If you select a frame, the Actions panel displays the title
Actions – Frame, as shown below.

F Schlatt [Jul-06] 22

Flash ActionScript 2.0 overview

- A button or movie clip. If you select a button or movie clip, the panel
is titled accordingly.

You create ActionScript instructions by clicking the Add (+) button and
selecting an action from category submenus.

 The Actions Toolbox to the left contains categories of ActionScript
elements. Double-clicking an icon expands a category. The Actions
toolbox is designed to provide a quick way of adding script elements to
your scripts.

 The Script Pane is where you add ActionScript. You type into this
window just as you would with a word processor.

Many actions require that you enter parameters, which are additional
instructions that define how the action works.

F Schlatt [Jul-06] 23

Flash ActionScript 2.0 overview

 The Script Pane Toolbar provides a set of buttons and commands,
enabling to add or edit the script in the Script Pane.

- Once you double-click an icon, or type the opening parenthesis,
such as getURL(, code hints will appear. You can also manually
display code hints at any time by placing the cursor just after the
opening parenthesis, then pressing the Code Hint button on the
Script Pane Toolbar.

 The Script Navigator at the bottom left displays a hierarchical list of
elements, such as frames, buttons, movie clips, in your project that
contain scripts. Clicking an element will display the script attached to it
in the Script Pane for editing purposes.

F Schlatt [Jul-06] 24

Flash ActionScript 2.0 overview

 References
Flash MX 2004 ActionScript, Peachpit Press ISBN 0-321-21343-2
Flash MX ActionScript advanced, PeachPit Press ISBN 0-201-77022-9
Flash MX ActionScript Bible, Wiley, ISBN 0-7645-3614-1
Flash 5 ActionScript, QUE ISBN 0-7897-2524-X

F Schlatt [Jul-06] 25

	Flash ActionScript 2.0 Overview
	Flash ActionScript 2.0 overview
	Terminology
	Events
	Operators
	Keywords
	Classes

	Syntax rules
	Case sensitivity
	Dot Syntax
	Curly { } brackets
	Parentheses ()
	Quotation Marks "
	Semicolons ;
	Comments //
	Indenting, spacing

	Data types
	String data type
	Number data type
	Boolean data type
	Object data type
	movieClip data type
	Null data type
	Undefined data type
	Void data type
	Converting data types

	Variables
	Trace()
	Scoping and declaring variables
	Strict data typing

	Manipulating values in expressions
	Comparison operators
	String operators
	Logical operators
	Bitwise operators
	Equality operators
	Assignment operator =
	Repeating actions, loops

	Using functions
	Defining a function
	Passing parameters to a function
	Returning values from a function
	Calling a user defined function

	Viewing the Actions Panel
	Using the Actions Panel/ActionScript Editor
	Where to place ActionScript?
	The Actions panel

