XML in VB.net
XML in VB.net
XML is a general purpose tag based language and very easy to transfer and store data across applications. Like HTML , XML is a subset of SGML - Standard Generalized Markup Language. XML is a platform independent language, so the information formatted in XML can be used in any other platforms (Operating Systems). XML is a self-describing language and it gives the data as well as the rules to identify what information it contains.
XML files are made up of tags that contains data. Generally a start tag and end tag to hold the data. For example, if you want to create an XML tag name "Header" , the start tag is like < Header > and the end tag is like < /Header > . We can fill our information between these tags.
< Header > Header Content Here < /Header >
While creating an XML file , some important points have to remember :
* XML is case sensitive
ex: < Header > is not same as < HeadeR > .
* Tags must be closed in the reverse order that they were opened
ex : < first-tag >< second-tag > Data here < /second-tag > < /first-tag >
Sample XML file

[image: ]


The .Net technology is widely supported XML file format. The .Net Framework provides the Classes for read, write, and other operations in XML formatted files . These classes are stored in the namespaces like System.Xml, System.Xml.Schema, System.Xml.Serialization, System.Xml.XPath, System.Xml.Xsl etc. The Dataset in ADO.NET uses XML as its internal storage format.
You can use any text editor to create an XML file . More over XML files are readable by humans as well as computers. From the following links you can see how to use XML in VB.NET.


The interface

For this program I have created a simple interface of five buttons:
[image: ]

· btnCreate
· btnRead
· btnView
· btnSearch
· btnExit

Three of the buttons have had their enabled property set to false as we want the user to create their XML file before it can be read, viewed or searched. In the procedure associated with the button for creating the file I have set all three buttons’ enabled property to true.

How to set global variables

[bookmark: _GoBack]After creating my main form (frmMain.vb), I have also added a module by clicking on Project>Add module. I have called this modGlobals.vb and use it to store a global variable which allows me to have the string variable fileName recognised across all forms, allowing the user to set the XML files’ name and to also allow a form to read the contents of the file into a listbox.

[image: ]


How to create an XML file in VB.net
XML is a platform independent language, so the information formatted in XML can be used in any other platforms (Operating Systems). If we create an XML file in one platform it can be used in other platforms also.
For creating a new XML file in VB.NET, we are using XmlTextWriter class . The class takes FileName and Encoding as argument. Also we are here passing formatting details . The following source code creates an XML file and allows the user to name the file and how many products are to be added. filename is a global variable declared in a separate module.
[image: ]
createNode is a separate procedure that is called once for each product that the user wishes to enter. It sends a product ID (Increments numerically starting at 1), the product’s name, its price and that it is being written to an XML file.

[image: ]



Reading from an XML file

In the previous program we create an XML file and let the user name it. We saved it to a string variable called fileName. The following program read that file and extract the contents inside the XML tag to display to the user one item at a time. We can read an XML file in several ways depends on our requirement. This program read the content in Node wise. Here we are using XmlDataDocument class to read the XML file. In this program it search the Node < Product > and its child Nodes and extract the data in child nodes.

[image: ]



Searching an XML file
XML files are made up of tags that contains information. The .Net technology is widely supported XML file format. Also the Dataset in ADO.NET uses XML format as its internal storage format.
The following source code shows how to search an item in an XML file using Dataset. Here Dataset using an XmlReader for read the content of the file. Locate the XML file using XmlReader and pass the XmlReader as argument of Dataset. By using the Dataset, search the product Product2 in the file Product.XML with the help of DataView.

[image: ]

8 | Page

image4.png
Private Sub btnCreate_Click(sender As Object, e As Eventargs) Handles btnCreate.Click

“Declare the variables
Dim numProd, i As Integer
Dim currProd, price As String

“Choose a Filename
FileName = InputBox("What would you like your XL file to be called?”) & ".xml"

“Enable reading from the XL file
btnRead.Enabled = True
btnSearch.Enabled = True
btnView.Enabled = True

“Create the XL document
Dim writer As New XmlTextiriter(fileName, System.Text.Encoding.UTF8)

"Set the XL document to begin writing
writer WriteStartDocument(True)

* Set the formatting features of the XL document
writer.Formatting = Fornatting. Indented

writer. Indentation = 2

* Set the opening tag
writer_WritestartElenent("Table")

* Populate the XL document
numProd = InputBox("How many products do you want to sell?")

“Get the user to enter in the products and their prices

For i =1 To numProd
currProd = InputBox("Please enter the name of product " & 1)
price = InputBox("What is the price of " & currProd & "2")
createode(i, currProd, price, writer)

Next.

“Finish and close the XL document
writer.riteEndElenent()
writer.WriteEndDocument ()
writer.Close()

End Sub




image5.png
Private Sub createNode(Byval pID As String, ByVal pName As String, ByVal pPrice As String, ByVal writer As XmlTextiriter)

“Create the opening tag for each product
writer_WritestartElement("Product”)

“Write each product ID
writer WriteStartElement("Product_i
writer_Writestring(pID)
writer_WriteEndElenent()

“rite the product name
writer WriteStartElement("Product_nane”)
writer_Writestring(pliane)
writer_WriteEndElenent()

“Write the product price
writer WritestartElement("Product_price”)
writer.Writestring(pPrice)
writer_WriteEndElenent()

“Close the products tag
writer WriteEndElenent()

End Sub




image6.png
Private Sub btnRead_Click(sender As Object, e As EventArgs) Handles btnRead.Click

“Declare the variables

Dim xmldoc As New XrlDataDocurent()

Dim xmlnode As XrlliodeList

Dim i As Integer

Dim str As String

Dim f5 As New FileStrean(fileName, Filetode.Open, FileAccess.Read)

“Load the XL file for reading from
xmldoc. Load(fs)

“Find the opening tag of each element
xmlnode = xmldoc.GetElementsByTagliame("Product”

“Read the elements one by one

For 1 = @ To xmlnode.Count - 1
xmlnode(i) .ChildNodes. Ttem(9) . InnerText. Trim()
str = xmlnode(1).ChildNodes. Item(@). InnerText. Trim() & " " & xmlnode(1).ChildNodes. Item(1). InnerText.Trim() & " " & xmlnode(i).ChildNodes. Item(2). InnerText. Trim()
MsgBox(str)

Next.

£nd Sub




image7.png
Private Sub btnSearch_Click(sender As Object, e As EventArgs) Handles btnSearch.Click

“Declare the variables
Dim xmlFile As XrlReader

xmlFile = XnlReader.Create(fileName, New XnlReaderSettings())
Dim ds As New DataSet

Dim dv As Dataview

Dim prodToFind As String

“Check for the product the user wishes to find
prodToFind = InputBox("khat do you want to find?

“Read the file into a dataset
ds.ReadXnl (xnlFile)

dv = New DataView(ds.Tables(9))

dv.Sort = "Product_Name”

Dim index As Integer = dv.Find(prodToFind)

* Check whether the product was found or not
If index = -1 Then

MsgBox("Item Not Found")
Else

MsgBox(dv(index) ("Product_Name") . ToString() & " " & dv(index)("Product_Price").Tostring())
End If

£nd Sub




image1.png
<Table>

Product>
Product_id>1¢/Product_id>
<Product_nane>Product 1< Product_nane>
<Product_price>1000¢/Praduct_price>

</Produst >

<Product>
Product_id>2¢/Product_id>
<Product_nane>Product 2</Product_nane>
<Product_price>2000¢/Praduct_price>

</Produst >

<Product>
<Product_id>3¢/Product_id>
<Product_nane>Product 3<~Product_nane>
<Product_price>3000¢/Praduct_price>

</Produst >

<Product>
Product_id>4</Product_id>
<Product_nane>Product i< Product_nane>
<Product_price>4000</Praduct_price>

</Produst >

</Table)]




image2.png




image3.png
tmFileViewer.vb. TR frrFileViewer.vb [Design] fmMain.vb. frmMain.vb [Design]

i (General)
EModule modclobals

"Declare the variables
Public fileName As String

End Module





