UORKSHOP[EE

Finding an item in a list -
Is Connie in this class?

A simple method (algorithm) for finding an item in an.

array (list) is to start at the beginning of the array and
check each item in turn. This is a linear search. The
items in the list can be in any order.

SAMPLE PROGRAM 1
Searching for Connie

The program below lists all the members of a class and

then allows you to search for a particular student. The

program:

* Sets up an array of eight students.

e Prints the students.

* Allows you to enter the name of the student required.

¢ Searches the list one item (element) at a time from the
first.

¢ Stops when the person is found.

Procedure

¢ Create a new project, add a Start button, enter the
code and try the program.

La RN I oIy SN TR I L I

f harmes

andrea
andrew
chriz
Conme
dariw
dariry
rnickey
peter

find conmnie

checking position
checking position
checking position
checking position

o 0TS

conrie s at position 4

Exercises 1

(The linear search)

Option Explicit

Private Sub cmdStart_Click()
Dim name As String

Dim persoen(20) As String
Dim max As Integer

Dim item As Integer

Dim index As Integer
max = 8

Cis

Print "linear search"
person(1) = "andrea”
person(2) = "andrew"
person(3) = "chris"
person(4) = "connie"
person(5) = "danny"
person(6) = "danny"
persen(7) = "mickey"
person(8) = "peter"

AR R R AR R R LR R T R R

Print "list of names”
For Item = 1 To max

Print Item, person{Item)
Next Item

'enter the person to be found

name = InputBox("enter a name to find ")
Print

Print "find "; name

Print

'search array of names
Index = 0
Do
Index = Index + 1
Print "checking position "; Index
If name = person(Index) Then
Print
Print person(Index); " is at position "; Index
End If
Loop Until name = person(Index) Or Index = max

End Sub

1 Try to find Connie, then other students —the first and the last — to check the algorithm.
£ What happens if you attempt to find a person who is not on the list?

3 Change the program so the situation is covered where the person is not on the list. Include a new boolean variable, “found’,
which is initially set to ‘false’. When a person is found, ‘found’ is set to ‘true’. After the search check if ‘found’ is “true’ or

‘false’, ie., found or not found.

H Simulate a linear search by putting six students in a line. Check each student in turn to find “Sue”,

5 Try to find Danny. What would you want the program to tell you?

© Arthur Anderson and Emerald City Books, 2002. This sheet may be photocopied for non-commercial classroom use. 17

W

ORKSHOP Fg

SAMPLE PROGRAM 2

D

uplicate names!

Often we have an array of names which contains more
than one Connie, or Danny in the case above. The
program below is similar to the example above, but it
searches the whole list each time,

Modify the previous program as shown below.

Option Explicit

Private Sub cmdStart_Click()
Dim name As String

Dim person(20) As String
Dim max As Integer
Dim item As Integer
Dim index As Integer
Max = 8

Cls

Print "linear search"
person(1) = "andrea"
person(2) = "andrew'
person(3) = "chris"
person{4) = "connie"
person(5) = "danny"
person{6) = "danny"
person(7) = "mickey"
person(8) = "peter"

Ji=

[B o iy N CRRRR Y RE

fir

darir 1z 3t pogition
checking poztion &

danny iz st position B

tof narmes
andiza
ardrzw

R
dariny
daniry
mickey
pzter

w3 dariry

ing [:IL"J‘” 7

king position 3

(The linear search)

(cont.)

Print "list of names"
For Item = 1To 8

Print Item, person(Item)
Next Item

R R]

‘enter the person to be found

Index = 0

name = InputBox("enter a name to find ")
Print

Print "find "; name

Print

'search array of names
For Index = 1 To 8
Print "checking position "; Index
If name = person({Index) Then
Print
Print person(Index); " is at position "; Index
Print
End If
Next Index
End Sub

¥

Exercises ¢

L Try and modify the second program to allow for the case
where the person is not found in the list. {See Question 3
on previous page.)

£ Create an array of 20 random numbers in the range 1 to
100 and use the linear search to find a specific number.
Use an input box to enter the number to be found.

3 Modify the program used, to generate 40 numbers in the
range 1 to 10. Again use the linear search but now add
to the program to count how many times your selected
number occurs.

4 Create a list of 1000 random numbers without repeats in
the range 1 to 1000. Using the timer function as used in
the previous workshop, time how long it takes to find
999. Try 10000 numbers. Find 9999.

5 Give six cards, each with a random number, to a group of
six students. Have another student pretend they are the
computer, performing the algorithm with the six students.

18

© Arthur Anderson and Emerald City Books, 2002. This sheet may be photocopied for non-commerciat classroom use.

WORKSHOP 7

Finding an item in a list
more quickly — Is there a
Connie in our school?

The linear search is satisfactory when the array of items
is not large. If there were only 20 students in a class then
the linear search may be convenient. If we have to
“search through the whole school of 800 students then
the linear search may not be adequate, as we could have
to search all the way through 800 students.

SAMPLE PROGRAM 1
Binary is hetter ... the HiLo game

The binary search is much more efficient than the linear
search, as it is able to find an item very quickly. The
binary search is based on the strategy that is useful in the
following guessing game. Here you have to guess a
number between 1 and 100, where the number is
selected by the computer.

The program:

* Generates a random number between 1 and 100.

¢ You guess the number.

* The computer tells you if you are too high or too

low.
e You keep guessing until the number is found.

Procedure

e Create a new project, add a Start button, enter the
code and try the program.

a ruamber 1- 100
35 boo o

B toa b

40 tao o

44 too o

47 too o

youaobi . 48

Option Explicit
Private Sub cmdStart_Click()
Dim guess As Integer
Dim randno As Integer
Cls
Print "quess a number 1 - 100"
Randomize
'gives a different sequence each time
randno = Int(100 * Rnd(1) + 1)
Do
guess = InputBox("enter a randne 1 - 100")
If guess = randno Then
Print "you got it . . .": randno
End If

(The binary warch)

If guess > randno Then
Print guess; " too hi”
End If

If guess < randno Then
Print guess; " too ilo"
End If
Loop Until guess = randno
End Sub

Exercises

L Try the program. What strategy can you adopt to find the
number as quickly as possible?

2 What is the minimum number of guesses you need to find
the number?

3 Modify the program so you only allow the minimum
number of guesses. Now the computer might have a
chance of winning a game!

4 Modify the program so the game becomes Hot-Cold, so
the message is not Too Hi or Too Lo but Very Hot, Hot,
Cold, Very Cold, depending on how far you are from the
number. What strategy would you adopt here to find the
number? You, as the programmer, can decide what Hot,
Cold means.

SAMPLE PROGRAM 2
The binary search

The binary search is based on the strategy used in the

HiLo game in the previous section. In the binary search

the items in the list must be arranged in order; for

example, we need a class to be in alphabetical order. The

binary search

e starts at the middle of the list

s checks if the guess is correct (you have found the
item) ‘

s checks if the guess is Too Hi (that is, after the item)

¢ checks if the guess is Too Lo (that is, before the item)

» discards half the remaining list at each guess when
narrowing the search. For example, if when guessing
a number between 1 and 100, you are told 50 is too Hi
then the numbers 50 and above are rejected from the
search.

The program uses:

o left — to indicate the left index of the remaining list
(initially 1)

e right — to indicate the right index of the remaining
list (initially 100}

¢+ mid — as the current position where you are
searching (initially 50).

© Arthur Anderson and Emerald City Books, 2002. This sheet may he photocopied for non-commercial classroom use. 19

UORKSHOQ{:ZZ

Procedure

e (reate a new project, add a Start button, enter the
code and try the program.

iz of names

1 andrea

2 andrew

i s

4 COETE

5 dariry
b dariny

7 rck sy

a peder

find coanmie

REME0r =ft it right
COrFE i 4 o
andrea a 1 3
andrew 2 3

3 3

DR L

chils
contie found &t postion 4

Option Explicit

Private Sub cmdStart_Click()
Dim name As String
Dim person(20) As String
Dim left As Integer

Dim right As Integer
Dim mid As Integer

Dim position As Integer
Dim max As Integer
Dim item As Integer
max = 8

Cls

Print "binary search”
person(1) = "andrea"
person(2) = "andrew"
person(3) = "chris"
person(4) = "connie”
person(5) = "danny"
person{6) = "danny"
person(7) = "mickey”
person{8) = "peter"

Print "list of names”
For item = 1 To 8

Print item, person(item)
Next item

CThe binary search)

(cont.)

R R R R R R R R R

‘anter the person to be found

name = InputBox("enter a name to find ")
Print

Print "find "; name

Print

Print "person”, "left", "mid", "right”

'search array of names

left =0
right = max
position = 0

While left <= right
mid = Int((left + right) / 2)
Print person{mid), left, mid, right
If name = person(mid) Then position = mid
If name <= person(mid) Then right = mid - 1
If name > person{mid) Then left = mid + 1
Wend

AR I R R R R R R R Y]

'print result of search
If position > 0 Then

Print name; " found at position
Eise

Print name;
End If

n

; position

not found"

End Sub

Exercises

What is the function of ‘left’ and *right’ in the binary
search program?

When there are duplicate names, the above program
locates the first of the names. How does the program do
this?

Create a program which generates 20 random numbers in
increasing order, between 1 and 99. Add to the program
so it uses a binary search to find a number you select.
Use an inputbox to enter the number. Print a message if
the number is not found, indicating the nearest number
before and after the selected number.

Create a list of 10 000 random numbers (without repeats)
in the range 1 to 10 000. Using the VB timer function as
used in the previous workshop, time how long it takes to
find 99997 (If it exists.)

20 © Arthur Anderson and Emerald City Books, 2002. This sheet may be photocopied for non-commercial classroom use.

WORKSHOP W

Sorting numbers into
ascending order

Sorting is an important part of processing data. There
are a number of important sorting algorithms that have
been developed. These include the ‘bubble’ sort,
‘selection’ sort, ‘insertion’ sort, ‘heap’ sort, ‘quick’ sort
and ‘shell’ sort.

In general, sorting programs ‘compare’ terms in an
array, followed by a subsequent swapping of terms, if
required. The comparison is based on

IF term1 > term2 THEN ...

Either then, or at a later stage, terms are ‘swapped’.
The swapping involves,

store = term1

terml = term?2

term?2 = store

Some computing languages have a ‘swap’ command
to do the swapping of terms directly.

Bubble sort is generally the first sorting algorithm
introduced to students.

SAMPLE PROGRAM 1
Bubble sorting five
random numbers

The program below:

° Generates five random two-digit numbers and assigns
them to an array of integers.

° Bubble sorts the numbers into order.

» Prints the array at each stage of the number sort, so
the operation of the sort can be seen.

® Prints the sorted numbers.

The bubblesort works by:

s Comparing adjacent terms (next to each other),
starting from the first two terms (1 and 2 of the array).

* Swapping the first term for the second position if the
second term is smaller.

* Comparing terms 2 and 3 and swapping the terms if
required.

* Repeating the process with terms 3 and 4 and so on,
until the largest term is at the end of the list.

The overall result of the process is to move the largest
term to the last position in the array, like ‘bubbling’ the
largest bubble to the surface first. The process is repeated
with the second largest term being ‘bubbled’ to the
second last position, and so on.

Look at the output below and you will be able to see
the sorting process.

(T he bubble Sﬂr@

Procedure

e Create a new project and add a Start button.
e Enter the code below and try the program.
e Check the cutput to see how the program works.

Option Explicit

Private Sub cmdStart_Click()
Dim first As Integer

Dim last As Integer

Dim max As Integer

Dim current As Integer

Dim item(20) As Integer
Dim temp As Integer

bl
93 E1 81 70 19
| bbbz numbers
Bl 99 &1 70 19
BT 81 39 70 13
BT 81 7093 13
BT &1 70 13 93
CB1OB1OT0 19 839
BT T0O31 19 99
E1 70 19 81 99
E1 T0 19 31 439
6113 FOO81 93
19 B1 70 81 99
19 B1 70 81 99
Cls
Randomize
Print "random numbers"
max = 5

For current = 1 To max
item{current) = Int(Rnd({1) * 90 + 10)
Print item{current); " ";

Next current

Print

Print "bubblesort numbers"”
‘initialise
first =1
last = max
While last > first
current = first
While current < last
If item{current} > item(current + 1) Then
'swap current item with next item
temp = item(current)
item{current) = item(current + 1)
item{current + 1) = temp
End If
current = current + 1
‘print the sort at each step
For temp = 1 Te max
Print item(temp); " ";
Next temp: Print

© Arthur Anderson and Emerald City Books, 2002. This sheet may be photocopied for non-commercial classroom use. 21

UORKSHOP{1§‘

Wend
last = last - 1
Wend

For current = 1 To max
wong

Print item(current); " ";
Next current

End Sub

As well as numbers, words and codes can be sorted in
a similar way. The computer bases the order on the ASCII
codes, where O<1<2 ... <A<B<C<D ... < a<b<c ... <z.

Exercises

L Alter the program to sort the numbers into descending
order. (Modify the IF statement.)

£ Modify the program to sort 10000 numbers, put the
numbers in an array, and use the timer function to time
the program. Remove the code, which prints the sorting
process at each step, as this only slows the program
down.

3 Modify the program to generate 100, two-character,
lower-case letter codes. That is, use random ASCII codes
{from 97-122), to generate codes like bx, wf, ys. (See
Workshop 9 in Book 1 on ASCII Codes). Sort these codes
into Book 1 alphabetical order.

4 Compare the time to sort two-digit numbers and two-
digit codes.

5 Simulate the operation of the sort by assigning six
random numbers to six students in a line. Have another
student move along the line performing the ‘sort’
manually. The simulation could also be performed by
individual students, sorting six randomly numbered cards.

b FOR loops can be used instead of the WHILE loops, as the
number of repeats is known for the sorting process.
Replace the original sorting code with the new code
below. Try the program.

(The bubble sort)

(cont.)
Print "bubblesort numbers"
‘initialise
first = 1

For last = max To first Step -1
For current = 1 To last - 1
If item(current) > item(current + 1) Then
'swap current item with next item
temp = item(currvent)
item(current) = item(current + 1)
item{current + 1) = temp
End If
Next current
‘print the sort at each step
For temp = 1 To max
Print item(temp); " *;
Next temp: Print
Next last

’Gi: Hanoy Hints:

PROGRAM DOCUMENTATION

Make your program easier to understand and fix!

Documentation can be extrinsic or intrinsic. Extrinsic

documentation is external to the program, for example

development documents,
manual,

installation guide, wuser

tutorial, reference manual. Intrinsic

documentation is built into your computer code and
includes:

L

Comments at the start of sections of code to explain
the function of the following code.

The use of meaningful variable names so you know
what the code is processing. Variable names
(identifiers) are usually a compromise between long,
fully understandable names, which hide the structure
of a program or short names without meaning. You
might use no_items’ for ‘number_of items’
Indenting of code so structures like REPEAT . . . UNTIL
or IF ... THEN . .. ENDIF stand out. The structures
have a beginning and an end.

Spaces in, or lines across, the code to separate sections
of code doing different processes.

Use of subprograms, modules or subroutines to break
the program into logical parts.

22 © Arthur Anderson and Emerald City Books, 2002. This sheet may be photocopied for non-commercial classroom use. - E

UORKSHOP(?§_

Selection sort

The selection sort is similar to the bubble sort, as it
moves the largest term to the last place in the list, then
the second largest to second last place in the list, and so
on. The selection sort is a useful sort where small airays
need to be sorted.

SAMPLE PROGRAM
Selection sorting six
random numbers

The sample program below is similar to the one in the
previous workshop. The program:

Generates six random numbers in the range 1 to 20
and assigns them to an array.

Prints the random numbers.

Sorts the numbers, printing out the results of the sort
at each stage.

Prints the sorted numbers.

The program works by:

Beginning at the start of the array and assigning the
tirst term as ‘largest’.

Moving along the list, comparing ‘largest’ with each
term in turn.

Replacing ‘largest’ with the current term, if the
current term is larger and recording the position.
Swapping the largest term to the end of the list.
Repeating the process by finding and swapping the
second largest term to the second last position, and so
on.

Procedure

* Create a new project; add a Start button.
e Enter the code and try the program.

random numbers
1381118 212

selection sort

Podl T2 ol —d —t

=gk
8111216149

hie nurnbers
116 214
15 19
16 14
16 19
216 19

ttin

P
Pl
I}

[P
[waun}

ek ek ok ek ek
s

o

o _x
—t 1
P Pt o0 T3

[ae]

d list

h

3

CT he selection

Option Explicit

Private Sub cmdStart_Click()
Dim count As Integer

Dim item(10) As Integer
Dim last As Integer

Dim current As Integer
Dim position As Integer
Dim largest As Integer
Dim first As Integer

Dim max, temp As Integer
Cls

max = 6

'make list of random numbers

Print "random numbers”

For count = 1 To max
item(count) = Int(20 * Rnd(1) + 1)
Print item(count); " ";

Next count

Print

Print

first = 1
last = max

EETEEETEREEEEEEEEEEEEEEEEEE AR EE R

Print "selection sort™: Print
Print "sorting the numbers”
Do While last > first
current = first
largest = item(current)
position = current
Do While current < last
current = current + 1
If item(current) > largest Then
largest = item(current)
position = current
End If
Loop
temp = item{position)
item(position) = item(last)
item(last) = temp
last = last - 1

For count = 1 To max
Print item{count); " ";
Next count
Print
Loop

R R R R R R R R EE R EEE R R R R R

Print: Print
Print "sorted list"

For count = 1 To max
Print item{count); "";

© Arthur Anderson and Emerald City Books, 2002. This sheet may be photocopied for non-commercial classroom use. 23

WORKSHOP Egj

Next count
Print

End Sub

Exercises

Repeat the exercises (listed below) from the previous
workshop, but this time use the selection sort.

L Modify the program to sort 10 000 numbers, and use the
timer function to time the program. (See Workshop 8,
Question 2). Remove the code, which prints the sorting
process at each step, as this only slows the program
down.

£ Modify the program to generate 100 two-character, lower-
case letter codes. That is, use random ASCII codes (from
97-122), to generate codes like bx, wf, ys. Sort these
codes into alphabetical order.

3 Compare the time to sort two-digit numbers and two-
digit codes.

Y4 Simulate the operation of the sort by assigning six
random numbers to six students in a line. Have another
student move along the line performing the ‘sort’
manually. The simulation could also be performed by
individual students, sorting six randomly numbered cards.

5 FOR loops can be used instead of the WHILE loops, as the
number of repeats is known for the sorting process.
Replace the original sorting code with the new code
below. Try the program.

Print "selection sort"”: Print
Print "sorting the numbers"
For last = max To first Step -1
current = first
largest = item(current)
position = current
'find next largest term
For current = 2 To last
If item{current) > largest Then
largest = item (current)
position = current
End If
Next current
‘swap largest to "last”
temp = item(position)
item(position) = item(last)
item(last) = temp

For count = 1 To max

CT he selection sort)

(cont.)

Print item(count); "";
Next count
Print
Next last

2G3- Hanpy HinTs:
‘Y' PROGRAM TESTING

Check your program so it doesn’t ‘crash’!

To test a program properly you should anticipate all
possible inputs and all program pathways.

¢ Use test data to check all inputs and pathways.
Include input data, which is in the expected range, at
boundaries between expected ranges, outside the
expected range, the wrong type of input (for example
a string instead of a number).

e Check program output against expected program
output. :

e Check loops. Check the type of loop you have used —
a counted loop (FOR), a pre-test (guarded) loop
(WHILE), which may not even be executed, or a post-
test (unguarded) loop, which will be executed at least
once.

» Check selections. Make sure you cover all possible
alternatives when using IF and CASEWHERE
statements.

e Check structures. Some parts of the program are
sequential with one process following another. Other
parts of programs are nested with structures inside
structures, for example loops inside loops OR, IFs
inside IFs. Be very careful and desk-check these
structures carefully. Do they process as you intended?

24 ® Arthur Anderson and Emerald City Books, 2002. This sheet may be photocopied for non-commercial classroom use.

WORKSHOP @ | (The insertion SOl‘t)

Insertion sort

The insertion sort is like shuffling cards into order. The cards from the original random pack are taken one at
a time and placed into a ‘sorted’ group of cards at the back of the pack.

SAMPLE PROGRAM 1
Sorting six random numbers

The insertion sort:

* Compares the last two numbers and if necessary swaps the largest number to the last position.

* Takes the third last term, (nextpos), and stores it (nextval).

* ‘Shuffles’ the following numbers forward, that is item(current - 1) = item(current)

* While nextval < item(current + 1, that is, until the correct position of the third-last term is found.

* Places the number in the correct position, item(current) = nextval ... and so on for the fourth-last term ...

The program:

* Generates six two-digit random numbers, assigning the numbers to an array.
¢ Prints the random numbers.

° Sorts the numbers into order, printing each stage of the sort.

¢ Prints the sorted numbers.

Procedure

= Create a new project and add a Start button.
* Enter the code and try the program.
e Check the program output to see how the sort works.

Option Explicit

Private Sub cmdStart_Click()
Dim first As Integer

Dim last As Integer

random nurnhers
77 B4 87 BE BT IR

Dim max As Integer dnzertion sort numbers

Dim cu t As Int FF B4 BY BE 16 &V

1M current As Integer T7OB4 87 16 5B 57

Dim item(20) As Integer 77 B4 1B B 57 97

Dim temp As Integer 7718 BE 5Y B4 BT
R 57 B4 77 OET

Dim largest As Integer 16 5B 57 B4 778

Dim nextpos As Integer zorted nurmbers

Dim nextval As Integer 16 BF 57 R4 77 &7

Cls

Randomize

Print "random numbers”

max = 6

For current = 1 To max
item(current) = Int(Rnd(1) * 90 + 10)
Print item(current); " *;

Next current

Print: Print

’****‘k**********'k**************************

Print "insertion sort numbers"

‘initialise
first = 1
last = max

nextpos = last - 1

While nextpos >= first
nextval = item(nextpos)
current = nextpos

© Arthur Anderson and Emerald City Books, 2002. This sheet may be photocopied for non-commercial classroom use.

25

workskor | 1] 0] (The insertion sort)

(cont.)

While (current < last) And (nextval > item(current + 1))
current = current + 1
item(current - 1) = item(current)

Wend

item(current) = nextval

nextpos = nextpos - 1

'print the sort at each step
For temp = 1 To max
Print item(temp); " ";
Next temp: Print
Wend

Print: Print "sorted numbers"
For current = 1 To max

Print item{current); " ";
Next current
Print

End Sub

Exercises

1 Modify the program to sort 10 000 numbers, and use the timer function to time the program. (See Workshop 8,
Question 2). Remove the code, which prints the sorting process at each step, as this only slows the program
down. Compare the speed of the three sorts. Which sorting algorithm is the best? Why?

£ Modify the program to generate 100 two-character, lower-case letter codes. That is, use random ASCII codes {from
97-122), to generate codes like bx, wf, ys. Sort these codes into alphabetical order.

3 Compare the time to sort two-digit numbers and two-digit codes.

4 Simulate the operation of the sort by assigning six random numbers to six students in a line. Have another
student mave along the line performing the ‘sort’ manually. The simulation could also be performed by individual
students, sorting six randomly numbered cards.

5 A FOR loop can be used instead of a WHILE loops, as the number of repeats is known for the sorting process.
Replace the original sorting code with the new code below. Try the program.

Print "insertion sort numbers”

"initialise
first = 1
tast = max

For nextpos = last - 1 To first Step -1
nextval = item(nextpos)
current = nextpos

'shuffle items forward

While (current < last) And (nextval > item(current + 1))
current = current + 1
item(current - 1) = item{current)

Wend

item{current) = nextval

‘print the sort at each step
For temp = 1 To max
Print item(temp); " ";
Next temp: Print
Next nextpos

26 © Arthur Anderson and Emerald City Books, 2002. This sheet may be photocopied for non-commercial classroom use.

