
Methods of
Algorithm Description

Second Edition

to accompany the

2 Unit (General)

2/3 Unit (Common)

3 Unit (Additional)

Computing Studies Syllabuses

Republished as a second edition with permission of the Director-General,
Department of School Education.

The original Methods of Algorithm Description document was developed at a
Computer Education Unit, Department of School Education writing workshop.

© Board of Studies NSW 1995

Published by
Board of Studies NSW
PO Box 460
North Sydney NSW 2059
Australia

Tel: (02) 9927 8111

ISBN 0 7310 3365 5

March 1995

95010

Table of Contents

Introduction 5

Structure of the Document 6

What is Programming? (OHT original) 7

What is an Algorithm? (OHT original) 8

Overview of Two Methods 10

Programming Structures 12
Sequence 13
Selection 15
Repetition 20
Subprograms 24

Solved Problems 29
Lift 31
Solution 1 31
Solution 2 32
Temperature Control 33
Toll Gate 35
‘Squash’ Scoring 38
Record Separation 41
Solution 1 42
Solution 2 44
Solution 3 46
Guess the Number 48
Income Tax 52
Telephone Dialler 54
Auto Teller 58

Algorithms for Searching and Sorting 71
Linear Search 72
Binary Search 75
Bubble Sort 77
Selection Sort 79
Insertion Sort 82

A Collection of Problems with No Solutions Given 85

This revised document was written in conjunction with
the Board of Studies Information and Communication
Technologies Syllabus Committee. It contains suitable
methods of algorithm description for use in the
implementation of the following courses in Computing
Studies:

2 Unit (General) Computing Studies

2/3 Unit (Common) Computing Studies

3 Unit (Additional) Computing Studies.

This document presents two methods for describing
algorithms for use in Computing Studies courses in NSW
schools. It shows, through the use of examples, how the
methods of algorithm description of pseudocode and
flowcharts can be used to describe solutions to problems.

There are many definitions of methods of algorithm
description in existence, some with many special symbols
and keywords defined for special purposes. This
document attempts to define a minimum set that will be
useful in terms of the syllabuses in Computing Studies.

In assessing the quality of algorithm descriptions, general
criteria such as the correctness of the algorithm, the clarity
of the description, the use of appropriate control
structures and the embodiment of structured methods,
rather than the specific features of any method, should be
taken into consideration.

Clarity of description and consistency in the use of the
components of the method chosen are of far more
importance than the actual shape of a flowchart element
or the specific wording of a pseudocode statement.

The document presents standards that students should
aim for in publishing solutions to problems. The same
standards should be used by teachers when presenting
algorithms to students. In many cases there are
alternatives that could be used and it should be noted that
students can expect to see methods of algorithm
description with many differences in detail published in
books and magazines. Teachers should ensure that the
approach presented in textbooks, worksheets and
examinations does not contradict the standards that
students use.

Introduction

5

The preliminary section consists of a description of the
programming process and some definitions of an algorithm
presented in the form of overhead transparency originals.
In the following section are descriptions of the main
features of two methods of algorithm description:
pseudocode and flowcharts. Descriptions and specific
examples of the programming structures of sequence,
selection, repetition and subprograms (procedures or
subroutines) are given.

The most substantial section of the document contains
sample problems and worked solutions that show the use
of each of the methods of algorithm description. The
solutions do not purport to describe the ‘ultimate’
solution, but rather one (or more) possible solutions to the
problem.

It will become obvious from reading the document that
not all solutions are directly suited to implementation on a
computer. The reason for this is that an aim of the
document is to show how solutions to problems can be
expressed through the use of sample problems to which
most people already know some solution.

There is a new section in this edition which provides
possible descriptions of the searching and sorting
algorithms required by Core Topic 2: Algorithm Design in
the 2/3 Unit (Common) Computing Studies course.

It must be noted that alternative solutions are possible. In
some cases different solutions are provided expressed in
each of the two prescribed methods. These can be used as
models for expressing the same solution in the other
method and should extend the reader’s understanding of
the topic.

The final section has a collection of problems for which no
solutions are given. These are provided to give you some
practice using the methods of algorithm description.

Structure of the Document

6

What is Programming?

Programming is the total creative process that
involves these stages:

• clearly define the problem

• analyse the problem

• design a solution

• implement the solution

• test the solution

• document the solution.

In the appropriate circumstances we should also:

• compare alternative solutions.

@@@@@@@@e?
@@@@@@@@e?
@@h?
@@h?
@@h?
@@h?
@@h?
@@h?

@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e
@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e

@@@@@@@@
@@@@@@@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

?@@
?@@
?@@
?@@
?@@
?@@

?@@@@@@@@
?@@@@@@@@

?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@
?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@

@@g
@@g
@@g
@@g
@@g
@@g
@@@@@@@@
@@@@@@@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

Methods of Algorithm Description

7

What is an Algorithm?

An algorithm consists of a set of explicit and
unambiguous finite steps which, when carried out
for a given set of initial conditions, produce the
corresponding output and terminate in finite time.

How to Solve it by Computer, RG Dromey, Prentice Hall UK, 1982

An algorithm is a finite, definite, effective
procedure, with some output.

Computer Science, D Woodhouse et al, Jacaranda Wiley, 1984

The series of steps that you develop to solve a
problem is known as a solution algorithm. There
are many different algorithms for almost any
problem.

Understanding Information Technology, K Behan and D Holmes,
Prentice Hall Australia, 1986

Reprinted with the permission of Prentice Hall Australia Pty Ltd.

@@@@@@@@e?
@@@@@@@@e?
@@h?
@@h?
@@h?
@@h?
@@h?
@@h?

@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e
@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e

@@@@@@@@
@@@@@@@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

?@@
?@@
?@@
?@@
?@@
?@@

?@@@@@@@@
?@@@@@@@@

?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@
?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@

@@g
@@g
@@g
@@g
@@g
@@g
@@@@@@@@
@@@@@@@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

Methods of Algorithm Description

8

Algorithm: a step-by-step procedure for solving a
problem; programming languages are essentially a
way of expressing algorithms.

Understanding Computers: Computer Languages,
by the editors of Time-Life Books, © 1988

Time-Life Books Inc.

In order that a task be carried out on a computer,
a method or technique for the task must be
described very precisely in terms of the different
steps. An algorithm is a description of the steps of
a task, using a particular technique. Writing an
algorithm is one of the first steps taken in
preparing a task to be done by a computer.

Computing Science, Peter Bishop, Thomas Nelson UK, 1982

Informally, an algorithm is a collection of
instructions which, when performed in a specific
sequence, produce the correct result. The study of
algorithms is at the heart of computer science.

Problem Solving and Computer Programming,
Peter Grogono & Sharon H Nelson,

© 1982 Addison-Wesley Publishing Company Inc.
Reproduced by the permission of the publisher.

@@@@@@@@e?
@@@@@@@@e?
@@h?
@@h?
@@h?
@@h?
@@h?
@@h?

@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e
@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e

@@@@@@@@
@@@@@@@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

?@@
?@@
?@@
?@@
?@@
?@@

?@@@@@@@@
?@@@@@@@@

?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@
?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@

@@g
@@g
@@g
@@g
@@g
@@g
@@@@@@@@
@@@@@@@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

Methods of Algorithm Description

9

Pseudocode Pseudocode essentially is English with some defined
rules of structure and some keywords that make it appear
a bit like program code. Some guidelines for writing
pseudocode are as follows.

Pseudocode Guidelines

• The keywords used for pseudocode in this document
are:

for start and finish
BEGIN MAINPROGRAM, END MAINPROGRAM

for initialisation
INITIALISATION, END INITIALISATION

for subprogram
BEGIN SUBPROGRAM, END SUBPROGRAM

for selection
IF, THEN, ELSE, ENDIF

for multi-way selection
CASEWHERE, OTHERWISE, ENDCASE

for pre-test repetition
WHILE, ENDWHILE

for post-test repetition
REPEAT, UNTIL

• Keywords are written in capitals.

• Structural elements come in pairs, eg for every BEGIN
there is an END, for every IF there is an ENDIF, etc.

• Indenting is used to show structure in the algorithm.

• The names of subprograms are underlined. This means
that when refining the solution to a problem, a word in
an algorithm can be underlined and a subprogram
developed. This feature is to assist the use of the ‘top-
down’ development concept.

Overview of Two Methods

10

Flowcharts Flowcharts are a diagrammatic method of representing
algorithms. They use an intuitive scheme of showing
operations in boxes connected by lines and arrows that
graphically show the flow of control in an algorithm. The
Australian Standards for flowcharting indicate that the
main direction of flow is accepted as being top to bottom
and left to right.

Flowchart Elements

Flowcharts are made up of the following box types
connected by lines with arrowheads indicating the flow. It
is common practice only to show arrowheads where the
flow is counter to that stated above.

These should be thought of as the characters of flowcharts.
Just as ordinary characters must be put together in certain
ways to produce well-formed words, and words must be
put together in certain ways to produce well-structured
sentences, these flowchart elements must be connected in
certain ways to form accepted structures and the
structures connected in certain ways to form well-
structured algorithms. The flowcharting structures for
sequence, selection and repetition are given in the next
section of this document.

It is considered good practice for a single flowchart never
to exceed the bounds of one page. If a flowchart does not
fit on one page, this is one instance in which the better
solution is to use refinement which results in the creation
of subprograms. Subprograms on separate pages are more
desirable than using a connector to join flowcharts over
more than one page. A flowchart expressing the solution
to an involved problem may have the main program
flowchart on one page with subprograms continuing the
problem solution on subsequent pages. An example of this
situation is given in the last solved problem in this
document — the Auto Teller problem on page 54.

terminator process

subprogram decision

Methods of Algorithm Description

11

The Computing Studies syllabuses mention the
programming structures of sequence, selection, repetition
and subprograms. A description of each of these structures,
together with examples of their use, follows.

The Structures Each of the five acceptable structures can be built from the
basic elements as shown below.

Sequence Binary Selection

Multi-way selection

Repetition (Pre-test) Repetition (Post-test)

Programming Structures

12

In all cases note there is only one entry point to the
structure and one exit point as indicated by the dashed
boxes.

Since each structure can be thought of as a process (as
shown by the dashed boxes containing the structure),
more complex algorithms can be constructed by replacing
any single process by one or other of the structures.

Sequence In a computer program or an algorithm, sequence involves
simple steps which are to be executed one after the other.
The steps are executed in the same order in which they are
written.

In pseudocode, sequence is expressed as:

process 1

process 2

…

…

process n

In a flowchart, sequence is expressed as:

(The arrowheads are optional if the flow is top-to-bottom.)

process 1

process 2

process n

Methods of Algorithm Description

13

An Example Using Sequence
Problem: Write a set of instructions that describe how to

make a pot of tea.

Pseudocode

BEGIN
fill a kettle with water
boil the water in the kettle
put the tea leaves in the pot
pour boiling water in the pot
END

Flowchart

fill a kettle
with water

boil the water
in the kettle

put the tea
leaves in the pot

pour boiling
water in the pot

end

begin

Methods of Algorithm Description

14

Selection Selection is used in a computer program or algorithm to
determine which particular step or set of steps is to be
executed. A selection statement can be used to choose a
specific path dependent on a condition. There are two
types of selection: binary (two-way branching) selection
and multi-way (many way branching) selection. Following
is a description of each.

Binary Selection
As the name implies, binary selection allows the choice
between two possible paths. If the condition is met then
one path is taken, otherwise the second possible path is
followed. In each of the examples below, the first case
described requires a process to be completed only if the
condition is true. The process is ignored if the condition is
false. In other words there is only one path that requires
processing to be done, so the processing free path is left
out rather than included saying ‘do nothing’.

In pseudocode, binary selection is expressed in the
following ways:

1. IF condition THEN
process 1

ENDIF

2. IF condition THEN
process 1

ELSE
process 2

ENDIF

In flowcharts, binary selection is expressed in the
following ways:

condition

process 1

False True

Methods of Algorithm Description

15

1.

Note: In a flowchart it is most important to indicate which
path is to be followed when the condition is true,
and which path to follow when the condition is
false. Without these indications the flowchart is
open to more than one interpretation.

Note: There are two acceptable ways to represent a decision
in all of the structures.

1. The condition is expressed as a statement and the two
possible outcomes are indicated by True, False.

2. The condition is expressed as a question and the two
possible outcomes are indicated by Yes, No.

Either method is acceptable. For consistency, the former
method is used throughout the document.

Is
A > 0 ?

No Yes

A > 0
False True

condition

process 1

False True

process 2

Methods of Algorithm Description

16

2.

Multi-way Selection
Multi-way selection allows for any number of possible
choices, or cases. The path taken is determined by the
selection of the choice which is true. Multi-way selection is
often referred to as a case structure.

In pseudocode, multiple selection is expressed as:

CASEWHERE expression evaluates to

choice a : process a
choice b : process b

. .

. .

. .
OTHERWISE : default process

ENDCASE

Note: As the flowchart version of the multi-way selection
indicates, only one process on each pass is executed
as a result of the implementation of the multi-way
selection.

In a flowchart, multi-way selection is expressed as:

process a process b default process

choice a choice b otherwise

expression

Methods of Algorithm Description

17

Examples Using Binary Selection
Problem 1: Write a set of instructions to describe when to

answer the phone.

Pseudocode
IF the telephone is ringing THEN

answer the telephone
ENDIF

Flowchart

Problem 2: Write a set of instructions to follow when
approaching a set of traffic control lights.

Pseudocode
IF the signal is green THEN

proceed through the intersection
ELSE

stop the vehicle
ENDIF

Flowchart

False Truethe
signal is
green

proceed through
the intersectionstop the vehicle

the
telephone
is ringing

answer the
telephone

False True

Methods of Algorithm Description

18

An Example Using Multi-way Selection
Problem: Write a set of instructions that describes how to

respond to all possible signals at a set of traffic
control lights.

Pseudocode
CASEWHERE signal is

red : stop the vehicle
amber : stop the vehicle
green : proceed through the intersection
OTHERWISE : proceed with caution

ENDCASE

Flowchart

signal is

amber green otherwisered

proceed through
the intersectionstop the vehicle stop the vehicle proceed

with caution

Methods of Algorithm Description

19

Repetition Repetition allows for a portion of an algorithm or
computer program to be done any number of times
dependent on some condition being met. An occurrence of
repetition is usually known as a loop.

An essential feature of repetition is that each loop has a
termination condition to stop the repetition, or the obvious
outcome is that the loop never completes execution (an
infinite loop). The termination condition can be checked or
tested at the beginning or end of the loop, and is known as
a pre-test or post-test respectively. Following is a
description of each of these types of loop.

Repetition: Pre-Test
A pre-tested loop is so named because the condition has to
be met at the very beginning of the loop or the body of the
loop is not executed. This construct is often called a
guarded loop. The body of the loop is executed repeatedly
while the termination condition is true.

In pseudocode pre-test repetition is expressed as:

WHILE condition is true

process(es)

ENDWHILE

In flowcharting pre-test repetition is expressed as:

Although these two flowcharts are topologically the same
and represent the same programming structure, the left-
hand example above is used throughout this document.

False

True

process

condition

False

process

condition True

Methods of Algorithm Description

20

Repetition: Post-Test
A post-tested loop executes the body of the loop before
testing the termination condition. This construct is often
referred to as an unguarded loop. The body of the loop is
repeatedly executed until the termination condition is
true.

An important difference between a pre-test and post-test
loop is that the statements of a post-test loop are executed
at least once even if the condition is originally true,
whereas the body of the pre-test loop may never be
executed if the termination condition is originally true. A
close look at the representations of the two loop types
makes this point apparent.

In pseudocode, post-test is expressed as:

REPEAT
process

UNTIL condition is true

In a flowchart, post-test is expressed as:

False

True

process

condition

Methods of Algorithm Description

21

An Example Using Pre-Test Repetition
Problem: Determine a safety procedure for travelling in a

carriage on a moving train.

Pseudocode
WHILE the train is moving

keep wholly within the carriage
ENDWHILE

Flowchart

False

True

keep wholly
within the car

the train
is moving

Methods of Algorithm Description

22

An Example Using Post-Test Repetition
Problem: Determine a procedure to beat egg whites until

fluffy.

Pseudocode
REPEAT

beat the egg whites
UNTIL fluffy

Flowchart

False

True

beat the
egg whites

egg whites
fluffy

Methods of Algorithm Description

23

Subprograms Subprograms, as the name implies, are complete part-
programs that are used from within the main program
section. They allow the process of refinement to be used to
develop solutions to problems that are easy to follow.
Sections of the solution are developed and presented in
understandable chunks, and because of this, subprograms
are particularly useful when using the top-down method
of solution development.

When using subprograms it is important that the solution
expression indicates where the main program branches to
a subprogram. It is equally important to indicate exactly
where the subprogram begins. In pseudocode, the
statement in the main program that is expanded in a
subprogram is underlined to indicate that further
explanation follows. The expanded subprogram section
should be identified by using the keywords BEGIN
SUBPROGRAM followed by the underlined title used in the
main program. The end of the subprogram is marked by
the keywords END SUBPROGRAM and the underlined title
used in the main program.

When using flowcharts, a subprogram is shown by an
additional vertical line on each side of the process box.
This indicates that the subprogram is expanded elsewhere.
The start and end of the subprogram flowchart uses the
name of the subprogram in the termination boxes.

Example of Using Subprograms in Pseudocode

BEGIN MAINPROGRAM
process l
process 2
process 3
process 4
END MAINPROGRAM

BEGIN SUBPROGRAM process 2
do this
do that
END SUBPROGRAM process 2

Methods of Algorithm Description

24

Example of Using Subprograms in Flowcharts

begin

process 2

process 1

process 3

process 4

end

begin process 2

do this

do that

end process 2

Methods of Algorithm Description

25

In many cases a subprogram can be written to do the same
task at two or more points in an algorithm. Each time the
subprogram is called, it may operate on different data. To
indicate the data to be used one or more parameters are
used. The parameters allow the author to write a general
algorithm using the formal parameters. When the
subprogram is executed, the algorithm carries out its task
on the actual parameters given at the call.

The parameters to be used by a subprogram are provided
as a list in parentheses after the name of the subprogram.
There is no need to include them at the end of the algorithm.

Example of Using Subprograms with one
Parameter in Pseudocode

BEGIN MAINPROGRAM
read (name)
read (address)
END MAINPROGRAM

BEGIN SUBPROGRAM read (array)
set pointer to first position
get a character

WHILE character is not the end of data AND there is room in the array
store character in the array at the position given by the pointer
increment the pointer
get a character

ENDWHILE

END SUBPROGRAM read

At the first call of this subprogram the characters are read
into the array called ‘name’, at the second call the characters
are read into the array called ‘address’.

Methods of Algorithm Description

26

Example of Using Subprograms with one
Parameter in Flowcharts

get a character

store character in
array at position

given by the pointer

end read

False
character ≠
end of data
and room in

the array

True

get a character

set pointer to
first position

end

begin read
(array)

read
(address)

read
(name)

begin

increment pointer

Methods of Algorithm Description

27

Solved Problems

Table Indicating Programming Structures
Used in the Sample Problems

Methods of Algorithm Description

30

Problem Sequence
Binary

Selection
(if-then)

Multiple
Selection

(case)

Repetition:
(while)

Repetition:
(repeat-until)

Subprogram

Lift
Solution 1 ✓ ✓

Lift
Solution 2 ✓ ✓

Temperature
Control ✓ ✓ ✓

Toll Gate ✓ ✓ ✓ ✓ ✓

Squash
Scoring ✓ ✓ ✓ ✓

Record
Separation
Solution 1

✓ ✓ ✓

Record
Separation
Solution 2

✓ ✓ ✓

Record
Separation
Solution 3

✓ ✓

Guess the
Number ✓ ✓ ✓ ✓

Income Tax ✓ ✓

Telephone
Dialler ✓ ✓ ✓ ✓ ✓ ✓

Auto-Teller ✓ ✓ ✓ ✓ ✓ ✓

Problem A lift remains positioned at the ground floor level of a
building with the doors shut whenever it is not in use.
When a call button is pressed on any floor, the lift moves
to the required floor and the lift doors open. Write an
algorithm to express the logic of controlling the lift.

Solution 1 This solution uses sequence and repeat-until structures.

Pseudocode

An algorithm to express the logic of controlling a lift

BEGIN MAINPROGRAM

REPEAT
check all buttons

UNTIL a button is pressed

move to the required floor
open the doors

END MAINPROGRAM

Flowchart

An algorithm to express the logic of controlling a lift

end

open the doors

move to the
required floor

True

False button is
pressed

check all buttons

begin

31

Lift Problem

Solution 2 This solution uses sequence and while structures.

Pseudocode

An algorithm to express the logic of controlling a lift

BEGIN MAINPROGRAM

check all buttons

WHILE no button has been pressed
check all buttons

ENDWHILE

move to the required floor
open the doors

END MAINPROGRAM

Flowchart

An algorithm to express the logic of controlling a lift

end

open the doors

move to the
required floor

check all buttons

no button
is pressed

check all buttons

False

True

begin

Methods of Algorithm Description

32

Problem At a NSW coastal town the maximum annual temperature
range is typically 12–34 degrees Celsius. An air
conditioning company is installing a heating/cooling
system in a new shopping centre in that town. The system
checks the temperature every five minutes and adjusts the
air temperature by using a combination of two heating
and two cooling units. These units operate according to
these temperature ranges:

0–15 degrees C – 2 heating units

16–20 degrees C – 1 heating unit

21–28 degrees C – 1 cooling unit

> 29 degrees C – 2 cooling units

Write an algorithm that could be used to control the air
conditioning system.

Solution This solution uses sequence, while and case structures.

Pseudocode

An algorithm to describe the control of an air conditioning
system. The input comes from sensors in the shopping
centre.

BEGIN MAINPROGRAM
read the temperature

WHILE the system is turned on

CASEWHERE temperature
< 16 : run two heating units
16 to 20 : run one heating unit
21 to 28 : run one cooling unit
OTHERWISE : run two cooling units

ENDCASE

wait five minutes
read the temperature

ENDWHILE

END MAINPROGRAM

33

Temperature Control Problem

Flowchart

An algorithm to describe the control of an air conditioning
system. The input comes from sensors in the shopping
centre.

begin

read the
temperature

less than 16 16–20 21–28 otherwise

system
turned on

temperature
range is

False

True

end

run two
heating units

run one
heating unit

run one
cooling unit

run two
cooling units

wait five
minutes

read the
temperature

Methods of Algorithm Description

34

Problem When operational a toll gate operates by having a boom
gate obstructing the road, and a sensor detecting when a
vehicle is present. After coins to the value of $1.00 have
been deposited in the basket, the boom gate opens and
stays open until a vehicle has gone through. Amounts
greater than $1.00 are accepted but no change is given.
Individual coins less than 10 cents are ignored.

Write an algorithm to describe the control of the toll gate.

Solution This solution uses sequence, if-then, repeat-until, while, and
subprogram structures.

Pseudocode

An algorithm used to describe the operation of a toll gate
that has a boom gate, a vehicle sensor, and a coin
collection basket.

BEGIN MAINPROGRAM

REPEAT

REPEAT
wait

UNTIL car has arrived

get the money
open boom gate

REPEAT
wait

UNTIL car has passed

close boom gate
UNTIL toll gate is not operational

END MAINPROGRAM

BEGIN SUBPROGRAM get the money

INITIALISATION
money collected is set to 0
END INITIALISATION

WHILE money collected is less than $1
receive coin

IF coin is less than 10 cents THEN
ignore coin

ELSE
add the value of the coin to the money collected

ENDIF

ENDWHILE

END SUBPROGRAM get the money

35

Toll Gate Problem

Flowchart

An algorithm used to describe the operation of a toll gate
that has a boom gate, a vehicle sensor, and a coin collection
basket.

False car has
passed

True

begin

wait

False car has
arrived

False toll gate not
operational

True

True

get the money

open boom gate

wait

close boom gate

end

Methods of Algorithm Description

36

Subprogram

True

begin
get the money

set money
collected to zero

end
get the money

money
collected less

than $1

receive a coin

coin
smaller

than 10c

add value of
coin to money

collected
ignore coin

False

False

True

Methods of Algorithm Description

37

Problem Write an algorithm to describe how to score a ball game,
which is similar to squash. This ball game is scored as
follows: the server gets one point for winning a rally. If
the server loses the rally they lose the right to serve the
next ball, but lose no points. The receiver gains the right
to serve (but no point) if they win a rally. To win the game
a player must win nine points.

Solution This solution uses sequence, repeat-until, if-then and subprogram
structures.

Pseudocode
An algorithm to describe the logic for scoring a ball game
similar to squash.

BEGIN MAINPROGRAM

INITIALISATION
set RequiredPoints to 9
set each player’s points to 0
END INITIALISATION

toss and decide the server

REPEAT
server serves the ball

REPEAT
play the rally

UNTIL rally is won

IF the server wins the rally THEN
increment the server’s points by 1

ELSE

swap player status
ENDIF

UNTIL a player has won RequiredPoints

declare the winner

END MAINPROGRAM

BEGIN SUBPROGRAM toss and decide the server
toss a coin

IF heads THEN
player 1 is the server
player 2 is the receiver

ELSE
player 2 is the server
player 1 is the receiver

ENDIF

END SUBPROGRAM toss and decide the server

38

‘Squash’ Scoring Problem

Flowchart

An algorithm to describe the logic for scoring a ball game
similar to squash.

Trueserver wins
the rally

False

begin

rally won
False

True

False

end

player has
RequiredPoints

True

set RequiredPoints
to 9

set each player’s
score to 0

toss and
decide server

server serves
the ball

play a rally

swap the
player status

increase server's
points by one

Methods of Algorithm Description

39

Subprogram

Trueresult
is heads

player 2 is
the server

player 1 is
the server

False

begin toss and
decide server

toss a coin

player 1 is
the receiver

player 2 is
the receiver

end toss and
decide server

Methods of Algorithm Description

40

Problem Let us assume that a particular database program
manages a simple mailing list which consists of one record
for each person on the list, and a number of fields
containing information about each person (their name,
address, etc). The program can read in data produced by a
word processor provided that data is structured in the
following way:

Each record to be read must be a single paragraph
terminated by a return character, and each field within a
record is separated by a tab character. For example:

Colin Jamesontab33 Falcon StreettabWaverlytabNSWtab2113return

would be read as one record containing five fields. The
end of the data is marked with a # (hash) character which
immediately follows the return ending the last paragraph.

Assuming that there is at least one line of valid data at the
start of the input file, describe an algorithm that the
program might use to read such data one character at a
time and place the information into separate fields and
records. The algorithm reports the number of records read
when all the records have been processed.

41

Record Separation Problem

Solution 1 This solution uses sequence, while and case structures.

Pseudocode

An algorithm to describe the separation of a string of
formatted data into fields and records to be used as input
to a database.

BEGIN MAINPROGRAM

INITIALISATION
set record number to 0
set field number to 0
set field to empty
END INITIALISATION

read a character from the input file

WHILE character is not a hash

CASEWHERE character is

tab: output the field to the database
increment the field number
set the field to empty

return: output the field to the database
increment the field number
increment the record number
set field number to 0
set the field to empty

OTHERWISE: append the character to the field

ENDCASE

read a character from the input file

ENDWHILE

report how many records were read

END MAINPROGRAM

Methods of Algorithm Description

42

Flowchart

An algorithm to describe the separation of a string of
formatted data into fields and records to be used as input
to a database.

return otherwisetab

set field number
to 0 and field

to empty

begin

record number and
field number are set

to 0
field is set to empty

read a character
from input file

end

character is

True

False

increment the
field number

set field to empty

output the field

increment the
field number

increment the
record number

read a character
from input file

append character
to the fieldoutput the field

report how many
records were read

character
not a hash

Methods of Algorithm Description

43

Solution 2 This solution uses sequence, repeat-until and if-then-else
structures.

Pseudocode

An algorithm to describe the separation of a string of
formatted data into fields and records to be used as input
to a database.

BEGIN MAINPROGRAM

INITIALISATION
record number is set to 0
field number is set to 0
field is set to empty

END INITIALISATION

REPEAT
read a character from the file

IF the character is a hash THEN
don’t do anything

ELSE

IF the character is a return THEN
output the field to the database
increment the field number
increment the record number
set the field number to 0
set the field to empty

ELSE

IF the character is a tab THEN
output the field to the database
increment the field number
set the field to empty

ELSE
append the character to the field

ENDIF

ENDIF

ENDIF

UNTIL the character is a hash

report how many records were read

END MAINPROGRAM

Methods of Algorithm Description

44

Flowchart

An algorithm to describe the separation of a string of
formatted data into fields and records to be used as input
to a database.

False

begin

record number and
field number are set

to 0
field is set to empty

read a character
from input file

True False

end

increment the field
number and

record number

True

character
is a hash

True Falsecharacter
is a return

True Falsecharacter
is a tab

output the field
to the database

output the field
to the database

add the character
to the field

set field number
to 0

set the field
to empty

increment the
field number

set the field
to empty

character
is a hash

report how many
records were read

Methods of Algorithm Description

45

Solution 3 This solution uses sequence and while structures.

Pseudocode

An algorithm to describe the separation of a string of
formatted data into fields and records, which are to be
used as input to a database. It assumes the data are correct.

MAINPROGRAM

INITIALISATION
set record number to 0
set field number to 0
set field to empty

END INITIALISATION

read a character from the file

WHILE the character is not a hash

WHILE the character is not a return

WHILE the character is not a tab
append the character to the field
read a character from the file

ENDWHILE

output the field to the database
increment the field number
set field to empty
read a character from the file

ENDWHILE

output the field to the database
increment the record number
set field number to 0
set the field to empty
read a character from the file

ENDWHILE

report how many records were read
END MAINPROGRAM

Methods of Algorithm Description

46

Flowchart

An algorithm to describe the separation of a string of
formatted data into fields and records, which are to be
used as input to a database. It assumes the data are correct.

begin

record number and

field number are set

to 0

field is set to empty

character

not a hash

read a character

from the file

add the character

to the file

read a character

from the file

output the field

increment the

field number

 set field to empty

read a character

from the file

increment the

record number

set field to empty and

field number to 0

read a character

from the file

report number of

records read

output the field

end

character

not a return

 character

not a tab

True

False

False

True

False

True

Methods of Algorithm Description

47

Problem In a simple number game your opponent thinks of a secret
number between l and 100. In no more than 10 guesses
you have to try to guess the number. After each guess
your opponent tells you if your guess was too high, too
low or correct. Your opponent also keeps track of how
many guesses you have had and tells you the game is over
when you use all of your ten guesses or when you guess
the number correctly.

Describe an algorithm which takes the role of your
opponent in this game. Include in your solution a
subprogram which checks for illegal guesses (those less
than l or greater than 100). Include also the subprogram
which generates a secret number between 1 and 100. Do
not expand this but assume it is available.

48

Guess the Number Problem

Solution This solution uses sequence, repeat-until, if-then-else and
subprogram structures.

Pseudocode

An algorithm to describe a game in which the user tries to
guess a number between 1 and 100, using no more than
ten guesses.

BEGIN MAINPROGRAM

INITIALISATION
number of guesses is set to 0
GotIt is set to false
END INITIALISATION

generate a secret number using random number generator

REPEAT
get a guess from the user

IF the guess is in range THEN
increment the number of guesses
check the guess

ELSE
tell the user the guess is out of range

ENDIF

UNTIL guess is correct (GotIt is true) or number of guesses is 10

IF the guess is incorrect (GotIt is false) THEN
tell the user they have run out of guesses (=10)
tell the user the secret number

ENDIF

END MAINPROGRAM

BEGIN SUBPROGRAM check the guess

IF guess > secret number THEN
tell the user their guess is too big

ELSE
IF guess < secret number THEN

tell the user their guess is too small

ELSE
congratulate the user on a correct guess
tell them how many guesses they took
set GotIt to true

ENDIF
ENDIF

END SUBPROGRAM check the guess

Methods of Algorithm Description

49

Flowchart

An algorithm to describe a game in which the user tries to
guess a number between 1 and 100, using no more than
ten guesses.

begin

set the number
of guesses to 0

and GotIt to false

Trueguess in
range

False

False
GotIt is

true or number
of guesses is
equal to 10

True

generate a secret
number using

random generator

get a guess
from the user

increment the
number of guesses

check the guess

tell user that guess
is out of range

end

TrueFalse GotIt
is false

tell user they have
run out of guesses

tell the user the
secret number

Methods of Algorithm Description

50

Subprogram

end
check the guess

begin
check the guess

False
guess is

bigger than
secret

number

True

False
guess is
less than

secret
number

True

tell the user the
guess is too big

tell the user the
guess is too small

congratulate the
user on guessing
the secret number

tell the user how
many guesses

were taken

set GotIt to true

Methods of Algorithm Description

51

Problem To calculate the income tax payable on any income based
on the income tax scales shown below. The taxable income
is to be entered and the tax payable calculated.

Tax Scales

Solution This solution uses sequence and if-then structures.

Pseudocode

An algorithm used to calculate the tax payable on any
income using taxation rates set in the given table.

BEGIN MAINPROGRAM

input income

IF income greater than or equal to 50 001 THEN
tax is 15 314 + (income – 50 000) * 0.47

ELSE

IF income greater than or equal to 36 001 THEN
tax is 8874 + (income – 36 000) * 0.46

ELSE

IF income greater than or equal to 20 701 THEN
tax is 3060 + (income – 20 700) * 0.38

ELSE

IF income greater than or equal to 5401 THEN
tax is (income – 5400) * 0.20

ELSE

tax is nil

ENDIF

ENDIF

ENDIF

ENDIF

display income and tax payable
END MAINPROGRAM

Taxable Income ($) Tax payable

$1–5400 Nil

$5401–20 700 Nil plus 20 cents for each $1 over $5400

$20 701–36 000 $3060 plus 38 cents for each $1 over $20 700

$36 001–50 000 $8874 plus 46 cents for each $1 over $36 000

$50 001 and over $15 314 plus 47 cents for each $1 over $50 000

52

Income Tax Problem

Flowchart

An algorithm used to calculate the tax payable on any
income using taxation rates set in the given table.

Another valid method of solving this problem is to use the
multiple selection or ‘case’ structure.

begin

FalseTrue

end

income is
≥

50 001

display income
and tax

tax is 15 314 +
(income – 50 000)

* 0.47

read the income

FalseTrue

FalseTrue

FalseTrue

tax is nil

income is
≥

5401

tax is
(income – 5400)

* 0.20

income is
≥

20 701

tax is 3060 +
(income – 20 700)

* 0.38

tax is 8874 +
(income – 36 000)

* 0.46

income is
≥

36 001

Methods of Algorithm Description

53

Problem A telephone dialler is connected between a computer and
a telephone (see the diagram below). Its purpose is to dial
a telephone number entered via the computer keyboard,
establish a connection if it can and report on its progress
and degree of success. The whole telephone number is
entered via the computer keyboard at one time and is
stored in a buffer in the computer.

The dialler ‘dials’ a digit by sending pulses along the
telephone line. To dial 2 it sends two pulses, to dial 5 it
sends five pulses etc. In the special case of a zero it sends
ten pulses. There is a gap of 2 seconds between the set of
pulses representing a digit of a telephone number.

The dialler will not operate unless the line is clear, in
which case it will provide a message that it allows a dial
tone then dials the number. Before sending the next digit it
will check for a response, this takes into account the
different lengths of phone numbers. The dialler will
provide a message that the phone is ‘ringing’, ‘engaged’ or
‘answered’.

Write an algorithm to describe the operation of the
telephone dialler.

Telephone

Dialler

number pulses

tonesmessage
(engaged,

answered etc)

54

Telephone Dialler Problem

Methods of Algorithm Description

55

Solution This solution used sequence, repeat-until, if-then, while, case
and subprogram structures.

Pseudocode
An algorithm to describe the control of a telephone dialler.

BEGIN MAINPROGRAM
REPEAT

try for phone line
UNTIL the response is a dial tone
send a message to the computer that a clear telephone line is available
REPEAT

REPEAT
get a character from the computer

UNTIL the character is a digit
IF the character is a 0 THEN

set the digit value of the character to 10
ENDIF
assign the digit value of the character to a counter
WHILE counter is greater than 0

send a pulse
decrement the counter

ENDWHILE
send no pulse for two seconds

UNTIL there is a response
determine outcome and send message (response)
END MAINPROGRAM

BEGIN SUBPROGRAM determine outcome and send
message (response)

INITIALISATION
set maxtime to 60
END INITIALISATION
IF response is an engaged tone THEN

send a message that the phone is engaged
ELSE

IF response indicates the phone is ringing THEN
send a message that the phone is ringing
set a timer to 0
REPEAT

check to see if the phone has been answered
increment the timer

UNTIL the phone is answered OR timer is greater than maxtime
CASEWHERE the phone was

answered : send a message that a connection has
been established

unanswered : send a message that no connection has
been established

OTHERWISE : send an error message
ENDCASE

ELSE
send an error message

ENDIF
ENDIF
END SUBPROGRAM determine outcome and send message

Flowchart

An algorithm to describe the control of a telephone dialler.

set a counter to the
value of the character

send a pulse

decrease the
counter by 1

send no pulse
for two seconds

False

False

True

determine outcome
and send message

(response)

end

True

begin

try for a
telephone line

send a message to
the computer that a

clear line is available

False

True

the
response

is a
dialtone

get a character
from the computer

False

True

True

set the value of
character to 10

False

character
is a digit

character
is a 0

counter is
bigger
than 0

there is a
response on

the line

Methods of Algorithm Description

56

Subprogram

answered unanswered otherwise

send an error
message

increment timer

False

True

phone is
answered or

 timer > maxtime

FalseResponse
is engaged

tone

True

send a message
that the phone

is engaged Truephone is
ringing

False

send an error
message

send a message
that the phone

is ringing

set a timer
to 0

check to see
if the phone
is answered

phone
was

send a message
that connection

established

send a message
that no connection

established

end determine
outcome and

send message

begin determine
outcome and send

message (response)

set maxtime to 60

Methods of Algorithm Description

57

Problem An automatic teller machine has a console as shown in the
diagram below. The teller machine follows this sequence
to assist a customer:

1. The customer will insert their card and enter a PIN. A
customer is allowed at most three tries at their PIN. If
they get it wrong three times the whole process ends
without ejecting the card.

2. If the PIN is correct they will then select an action
button (withdraw, deposit or balance).

3. Next they will select the account type (savings or
cheque).

4. Finally, they will enter the amount in whole dollars (if
appropriate), and press OK to confirm it, and the
transaction will be processed.

The auto teller will eject the customer’s card and stop the
process if the customer presses the ‘Cancel’ button.

Describe an algorithm which the auto teller could use to
accept the details from the customer and act on them.

Auto Teller Console

Withdrawal

Deposit

Balance OK Cancel

Cheque

Savings1 2 3 4

5 6 7 8

9 0

58

Auto Teller Problem

Solution This solution uses sequence, if-then, repeat-until, while, case
and subprogram structures.

Pseudocode

An algorithm to describe the control of an automatic teller
machine. Input comes from the buttons on the console,
output through a small video screen.

BEGIN MAINPROGRAM

INITIALISATION
set Action to an empty string
set Account to an empty string
set Amount to 0

END INITIALISATION

wait for the card to be inserted
get the PIN and check it (Action)

IF action is ‘cancel’ THEN
eject card

ELSE

IF action is not ‘keep card’ THEN
get action required (Action)

IF action is not ‘cancel’ THEN
get account to be used (Action, Account)
do the transaction

ENDIF

eject card

ENDIF

ENDIF

END MAINPROGRAM

BEGIN SUBPROGRAM wait for the card to be inserted

WHILE no card has been inserted
wait

ENDWHILE

END SUBPROGRAM wait for the card to be inserted

Methods of Algorithm Description

59

BEGIN SUBPROGRAM get the PIN and check it (Action)

INITIALISATION
set OK to FALSE
set NumberOfTries to 3

END INITIALISATION

IF cancel button has been pressed THEN
set Action to ‘cancel’

ELSE
REPEAT

accept a four digit number
decrement NumberOfTries
IF correct PIN THEN

set OK to TRUE
ENDIF

UNTIL OK OR number of tries is 0

IF NOT OK THEN
set Action to ‘keep card’

ENDIF

ENDIF

END SUBPROGRAM get the PIN and check it

BEGIN SUBPROGRAM get action required (Action)

IF cancel button has been pressed THEN
set Action to ‘cancel’

ELSE

REPEAT
prompt user for action key
get a key press

UNTIL key press is an action key

CASEWHERE keypress is
Withdrawal : set Action to ‘withdraw’
Deposit : set Action to ‘deposit’
Balance : set Action to ‘show balance’
Cancel : set Action to ‘cancel’

ENDCASE

ENDIF

END SUBPROGRAM get action required

Methods of Algorithm Description

60

BEGIN SUBPROGRAM get account to be used (Action, Account)

IF cancel button is pressed THEN
set Action to ‘cancel’

ELSE

REPEAT
prompt for account type key
get a keypress

UNTIL keypress is acceptable

CASEWHERE keypress is
savings account : set Account to ‘savings account’
cheque account : set Account to ‘cheque account’
cancel : set Action to ‘cancel’

ENDCASE

ENDIF

END SUBPROGRAM get account to be used

BEGIN SUBPROGRAM get the amount in dollars (Action, Amount)

INITIALISATION
set OK to FALSE
END INITIALISATION

IF the cancel button has been pressed THEN
set Action to ‘cancel’

ELSE

REPEAT

REPEAT
prompt for a keypress
get a keypress

UNTIL keypress is acceptable

CASEWHERE keypress is
OK : set OK to TRUE
cancel : set Action to ‘cancel’

set OK to TRUE
number : set Amount to 10 times the amount

plus digit value of number
ENDCASE

UNTIL OK

ENDIF

END SUBPROGRAM get the amount in dollars

Methods of Algorithm Description

61

BEGIN SUBPROGRAM do the transaction (Action, Account)

IF the cancel button has been pressed THEN
set Action to ‘cancel’

ENDIF

CASEWHERE Action is
cancel: set Amount to 0

set Account to empty string
deposit: get the amount in dollars (Action, Amount)

IF Action is not ‘cancel’ THEN

IF Account is ‘cheque’ THEN
add Amount to cheque account

ELSE
add Amount to savings account

ENDIF

ENDIF

withdraw: get the amount in dollars (Action, Amount)

IF Action is not ‘cancel’ THEN

IF Account is ‘cheque’ THEN
subtract Amount from cheque account

ELSE
subtract Amount from savings account

ENDIF

ENDIF

balance: IF Account is ‘cheque’ THEN
display balance of cheque account

ELSE
display balance of savings account

ENDIF

ENDCASE

END SUBPROGRAM do the transaction

Methods of Algorithm Description

62

Flowchart

An algorithm to describe the control of an automatic teller
machine. Input comes from the buttons on the console,
output through a small video screen.

begin

set Action to
an empty string

Action is
‘cancel’

Action
is not

‘keep card’

get Action
required (Action)

get Account to
be used

(Action, Account)

do the transaction
(Action, Account)

Action is
not

‘cancel’

end

set Account to
an empty string

set Amount to 0

wait for card
to be inserted

get the PIN
and check it

eject card

True

False

False

False

True

True
eject card

Methods of Algorithm Description

63

Subprograms

begin wait for card
to be inserted

False

True

wait

card not
inserted

end wait for card
to be inserted

Methods of Algorithm Description

64

end get the PIN
and check it

begin get the PIN
& check it (Action)

set number
of tries to 3

cancel
button is
pressed

correct PIN

OK = true
or

number of
tries = 0

OK

False True

False True

False True

False

True

set OK to false

accept a four
digit number

set Action
to ‘cancel’

decrement
number of tries

set Action to
‘keep card’

set OK to true

Methods of Algorithm Description

65

keypress is

True

end get Action
required

cancel
button is
pressed

set Action
to ‘cancel’

prompt for
action key

get a keypress

keypress is
action key

False True

False

begin get action
required (Action)

set Action to
‘withdrawal’

Deposit Balance CancelWithdrawal

set Action to
‘deposit’

set Action to
‘show balance’

set Action to
‘cancel’

Methods of Algorithm Description

66

keypress is

True

cancel
button is
pressed

set Action
to ‘cancel’

prompt for
account type key

get a keypress

keypress is
acceptable

False True

False

begin get account
to be used

 (Action, Account)

cheque account savings account cancel

end get account
to be used

set Account to
‘cheque account’

set Account to
‘savings account’

set Action to
‘cancel’

Methods of Algorithm Description

67

end get amount
 in dollars

begin get amount
in dollars

(Action, Amount)

keypress is

True

cancel
button is
pressed

keypress is
acceptable

False True

False

OK cancel number

OK is true
False

True

set Action
to ‘cancel’

set OK to false

get a keypress

set OK to true set Action
to ‘cancel’

set Amount to 10
times the amount
plus digit value

of number

set OK to true

prompt for
a keypress

Methods of Algorithm Description

68

withdrawaldeposit

begin do
transaction

 (Action, Account)

cancel
button

pressed

get Amount in
dollars (Action,

Amount)

True

add Amount to
cheque account

Account is
‘cheque’

TrueFalse

add Amount to
savings account

Action
is not

‘cancel’

False

set Action
to ‘cancel’

cancel balance

True

TrueFalse

False

TrueFalse

display balance
of cheque
account

Account is
‘cheque’

display balance
of savings
account

get Amount in
dollars (Action,

Amount)

Account is
‘cheque’

subtract Amount
from savings

account

Action
is not

‘cancel’

subtract Amount
from cheque

account

Action is

set Amount
to 0

set Account
to empty

string

end
do transaction

False True

Methods of Algorithm Description

69

Algorithms for
Searching and Sorting

To give some assistance with understanding the standard
algorithms for searching and sorting, as required in the 2/3
Unit (Common) Computing Studies Syllabus, the following
examples are provided.

Linear Search

Problem In a theatre there is a row of seats. Each seat is numbered
consecutively starting at 1. A person occupies each of the
seats. Describe an algorithm which an usher could follow
to find the seat number of the first person in the row who
is wearing a red jumper (indicated by the dark circle).

1 2 3 4 5 6 7 8

72

Algorithms for Searching

Solution This solution implements a linear (sequential) search
which will work whether or not the persons are seated in a
given order or at random.

The solution uses sequence, while and if-then-else structures.

Pseudocode

An algorithm to describe a linear (sequential) search to
find the seat number of the first person wearing a red
jumper from a set of persons sitting in a row of seats.

BEGIN MAINPROGRAM

INITIALISATION
stand in front of the first seat
set FoundIt to FALSE
set MoreSeats to TRUE

END INITIALISATION

get the description of the wanted person

WHILE FoundIt is FALSE AND MoreSeats

IF the person in front of you is not the wanted person THEN
stand in front of the next seat

ELSE
set FoundIt to TRUE

ENDIF

ENDWHILE

IF FoundIt THEN
report the seat number of the wanted person

ELSE
report that the wanted person is not present

ENDIF

END MAINPROGRAM

Methods of Algorithm Description

73

Problem A user has stored a set of numbers in a one-dimensional
array. Each element of the array contains a unique number.
Describe an algorithm the person could follow to find the
element of the array which contains a particular number.

Solution This solution implements a linear (sequential) search
which will work whether or not the numbers are stored in
order or at random.

The solution uses sequence, while, if-then and if-then-else
structures.

Flowchart

begin

set This to first position
set Last to last position
set FoundIt to FALSE

get Target

NOT
FoundIt

AND
This<=Last

Target =
data at This

position

set FoundIt TRUE
set PositionFound to

This position

False

True

True

False

False True

Increment This

report
‘Target not found’

report
PositionFound

end

FoundIt

1 2 3 4 5 6 7 8

14 34 12 19 41 26 45 16

Methods of Algorithm Description

74

Binary Search The task is to determine whether or not a particular data
value (the target) is present in a set of data. If the target is
found the position of its first occurrence is reported and
the search ends.

Note: that binary search will only work on sorted data.

General Idea of the Algorithm
Binary search divides the data set into two parts and
determines in which part the element is likely to be found.
The other part of the data set is discarded and the retained
part is divided into two parts. The process is continued
until either the value is found or there are no more
elements in the data set to be checked. If a match is found
then the position of the match is reported otherwise a
message is written telling the user that the target is not
present in the data.

At each division there are three possibilities for the target
(if it exists in the data set):

(1) the target lies at the division point;

(2) the target lies to the left of the division point

(3) the target lies to the right of the division point.

1 2 3 4 5 6 7 8

12 14 16 19 26 34 41 45

1 2 3 4 5 6 7 8

12 14 16 19 26 34 41 45

34 Target

Lower Middle Upper

Lower Middle Upper

Methods of Algorithm Description

75

Problem A user wants to find the telephone number of a person in
the Sydney Telephone Directory. The names are listed
alphabetically. Each set of data for a person is stored as an
element of a one-dimensional array. One way would be to
carry out a linear search starting with the first name in the
listing and checking each one until either the target is
found or the end of the directory is reached. Describe a
more efficient algorithm which the person could use to
find the telephone number of the particular person.

Solution This solution implements a binary search which will work
only if the names are in strict alphabetical order.

The solution uses sequence, repeat-until, if-then-else and
subprogram structures.

Pseudocode
BEGIN MAINPROGRAM

INITIALISATION
set Lower to first position
set Upper to last position
set FoundIt to FALSE
get the Target name
END INITIALISATION

REPEAT
calculate the Middle position

IF Target = data at Middle position THEN
set FoundIt to TRUE
set PositionFound to Middle

ELSE
IF Target < data at Middle position THEN

set Upper to Middle – 1
ELSE

set Lower to Middle + 2
ENDIF

ENDIF
UNTIL FoundIt OR Lower > Upper

IF FoundIt THEN
report PositionFound

ELSE
report ‘Target not present’

ENDIF

END MAINPROGRAM

BEGIN SUBPROGRAM calculate the Middle position
set Middle to (Upper + Lower) divided by 2
set Middle to integer part of Middle

END SUBPROGRAM calculate the Middle position

Methods of Algorithm Description

76

Bubble Sort The task is to sort a set of data into either ascending order
or descending order as determined when the algorithm is
written. In this case the order chosen is ascending order.

General Idea of the Algorithm
The data elements are compared in pairs and the larger of
the pair ‘bubbles’ towards the top of the structure. On
each pass, one element (the largest in the unsorted part)
will be moved to its correct position in the sorted part.

Problem A person wants to sort a set of marks into ascending order.
Each mark is stored as an element of a one-dimensional
array. Describe an algorithm which will sort the marks by
‘bubbling’ the largest mark in the unsorted part to the
‘top’ of the unsorted part. This will result in the sorted
part getting larger each time through and the unsorted
part getting smaller. The algorithm need not stop even if
the person realises that the marks become sorted before
the algorithm has finished.

1 2 3 4 5 6

32 23 12 19 42 54 Data set at end of first pass

1 2 3 4 5 6

32 23 12 19 42 54 Compare fifth with sixth
and leave

1 2 3 4 5 6

32 23 12 42 19 54 Compare fourth with fifth
and Swap

1 2 3 4 5 6

32 23 42 12 19 54 Compare third with fourth
and Swap

1 2 3 4 5 6

32 42 23 12 19 54 Compare second with third
and Swap

1 2 3 4 5 6

42 32 23 12 19 54 Compare first with second
and Swap

77

Algorithms for Sorting

Solution This solution implements a bubble sort on an array of
marks.

The solution uses sequence, while, if-then and subprogram
structures.

Pseudocode

BEGIN MAINPROGRAM

INITIALISATION
set End to last position
END INITIALISATION

WHILE End > first position
set Current to first position

WHILE Current is less than End

IF data at Current > data at (Current + 1) THEN
Swap (Current, Current + 1)

ENDIF

increment Current

ENDWHILE

decrement End

ENDWHILE

END MAINPROGRAM

Note: that the parameters to the subprogram when it is
called by the MAINPROGRAM are Current and Current
+ 1 but in the definition of the SUBPROGRAM general
names are used for the parameters. When the
SUBPROGRAM is called it substitutes the names of the
actual parameters for those of the formal parameters
used in the definition.

BEGIN SUBPROGRAM Swap (Position1, Position2)
set Temp to data value at Position1
set data at Position1 to data at Position2
set data at Position2 to Temp

END SUBPROGRAM Swap

Methods of Algorithm Description

78

Selection Sort In this algorithm a set of data is sorted into either
ascending order or descending order as determined when
the algorithm is written. In this case the order chosen is
ascending order.

General Idea of the Algorithm
The general idea behind the algorithm is to divide the
array into two parts — the unsorted part and the sorted
part. Each pass through the unsorted part finds the largest
number and places it at the start of the sorted part. The
array originally has an ‘empty’ sorted part and a ‘full’
unsorted part. So the largest number in the unsorted part
is found and swapped with the last element in the
unsorted part. The length of the sorted part is then
increased by one and the length of the unsorted part is
decreased by one.

1 2 3 4 5 6

12 16 22 24 32 41

1 2 3 4 5 6

16 12 22 24 32 41

1 2 3 4 5 6

22 12 16 24 32 41

1 2 3 4 5 6

24 12 16 22 32 41

1 2 3 4 5 6

24 12 16 32 22 41

1 2 3 4 5 6

24 12 16 32 41 22

Unsorted|Sorted

Unsorted|Sorted

Unsorted|Sorted

Unsorted|Sorted

Unsorted|Sorted

Unsorted|Sorted

Methods of Algorithm Description

79

Pseudocode

BEGIN MAINPROGRAM

INITIALISATION
set EndUnsorted to last position
END INITIALISATION

WHILE EndUnsorted > first position
set Current to first position
set Largest to data at Current
set PositionOfLargest to Current

WHILE Current < EndUnsorted
increment Current

IF data at Current > Largest THEN
set Largest to data at Current
set PositionOfLargest to Current

ENDIF

ENDWHILE

Swap (PositionOfLargest, EndUnsorted)
decrement EndUnsorted

ENDWHILE

END MAINPROGRAM

BEGIN SUBPROGRAM Swap (Position1, Position2)
set Temp to data value at Position1
set data at Position1 to data at Position2
set data at Position2 to Temp
END SUBPROGRAM Swap

Methods of Algorithm Description

80

Flowchart

FalseEndUnsorted
> first position

set Current to
first position

set Largest to
data at Current

increment Current

True

True

end

True

False

begin

set EndUnsorted
to last position

set Position Of Largest
 to Current

set Largest to
data at Current

set PosOfLargest
to Current

swap
 (Position Of Largest,

EndUnsorted)

decrement
EndUnsorted

FalseCurrent
< End Unsorted

data at
Current >
Largest

Methods of Algorithm Description

81

begin Swap

set
Temp to data
at Position1

set
data at Position1 to
data at Position2

set
data at Position2

to Temp

end Swap

Insertion Sort In this algorithm a set of data is sorted into either
ascending order or descending order as determined when
the algorithm is written. In this case the order chosen is
ascending order.

General Idea of the Algorithm
This is the method used by many card players to put their
cards in order. The general idea of the algorithm is to
divide the array into two parts — the unsorted part and
the sorted part. To begin with, the sorted part contains
only the right hand element. Each pass takes the last
element from the unsorted part and then finds where it
should be inserted in the sorted part. To find the proper
place to insert the element a sequential (linear) search is
used. As each element in the sorted part is checked, it is
moved, if necessary, one place to the left to make room for
the new element. At each pass the length of the sorted part
increases by one and the length of the unsorted part
decreases by one until its length is 0.

1 2 3 4 5 6

12 16 22 24 32 41

1 2 3 4 5 6

24 12 16 22 32 41

1 2 3 4 5 6

24 12 16 22 32 41

1 2 3 4 5 6

24 12 16 22 32 41

1 2 3 4 5 6

24 12 16 32 22 41

1 2 3 4 5 6

24 12 16 32 41 22

Unsorted|Sorted

Unsorted|Sorted

Unsorted|Sorted

Unsorted|Sorted

Unsorted|Sorted

Unsorted|Sorted

Methods of Algorithm Description

82

Pseudocode

BEGIN MAINPROGRAM

INITIALISATION
set First to first position
set Last to last position
set PositionOfNext to Last – 1
ENDINITIALISATION

WHILE PositionOfNext >= First
set Next to data at PositionOfNext
set Current to PositionOfNext
WHILE (Current < Last) AND (Next > data at (Current + 1))

increment Current
set data at (Current – 1) to data at Current

ENDWHILE
set data at Current to Next
decrement PositionOfNext

ENDWHILE

END MAINPROGRAM

Note: Variations of the algorithm are possible. In some
versions, the task of finding the correct place to
insert is separated from the task of moving the
elements to make room. By doing this, the task of
finding the correct place to insert can be speeded up
by using a binary search rather than a linear
search.

Methods of Algorithm Description

83

Flowchart

increment Current

True

end

set data at Current –1
to data at Current

set data at Current
to Next

decrement
PositionOfNext

set Last
to last position

False
PositionOfNext

>= First

set Next to data
at PositionOfNext

set Current to
PositionOfNext

True

begin

set First
to first position

False

set PositionOfNext
to Last –1

Current
< Last AND

Next > data at
Current + 1

Methods of Algorithm Description

84

A COLLECTION OF
PROBLEMS WITH NO

SOLUTIONS GIVEN

Use these problems to test your skills at using methods of
algorithm description.

l. Refine the ‘Lift Problem’ (on page 27) to establish a
more ‘realistic’ problem and solution. Consider the
problem of sending the lift to specific floors. Determine
when the lift doors should be opened and closed.

2. Refine the ‘Telephone Dialler Problem’ to cater for these
suggested extensions.

(a) Modify the dialler so that it rejects numbers
beginning with 0 (for STD call bar).

(b) As for (a), but allow access to Austpac 01922, 01923,
01924.

(c) Restrict as in (a), but allow 008 numbers.

3. A one-lane bridge only allows traffic to travel in one
direction at a time. A set of traffic lights controls the
flow of traffic. It takes a slow vehicle 45 seconds at most
to cross the bridge. Write an algorithm to specify the
control of the traffic lights.

Extension:
Consider a ‘rush’ period in which traffic travelling
north is three times as heavy as traffic travelling south.

4. Road work is being undertaken on a country road and
traffic is being controlled by a player of mechanical
‘stop/slow’ paddle turners. Write an algorithm to
describe the control of the paddle turners to safely
direct traffic around the road works.

5. A program accepts as input dates in the form
dd/mm/yy (eg 13/11/85) and later uses them in
expanded form (eg 13 November 1985). Write an
algorithm that could be used to do this conversion.
Assume that there are no incorrect dates, and that all
dates are in the 20th century.

6. Write an algorithm that will take today’s date and
someone’s birth date as input and use the data to
calculate the person’s age in years and full months.

Methods of Algorithm Description

86

7. A community group has decided to install an automatic
sprinkler system in the local park. The sprinkler should
come on when the ground moisture reduces to 20% of
saturation level which is measured by a sensor. It
should be turned off when the moisture reaches 55% of
saturation level. Write an algorithm that could be used
to control the sprinkler system.

8. A tourist bus has 53 seats. When tickets are booked, the
next available seats are allocated according to number
(ignoring where they are). Write an algorithm to decide
what is the next seat available and to store the name of
the person booking each seat.

Extension 1
The seats are arranged so that numbers 1 and 2 are
together, 3 and 4 are across the aisle and so on up to 48.
Seats 49 to 53 are across the back of the bus. Write an
algorithm that can choose the seat wanted from what is
available, then store the name of the person booked
with the seat number.

Extension 2
Write an algorithm to print out the names of people
booked on the bus in the order of the seats.

9. A subprogram of a grammar checking program checks
for the use of apostrophes for the possessive case.
Search a line of text for the symbol ‘. If it follows an s
and is also followed by an s, remove the second s.

Methods of Algorithm Description

87

	MAIN MENU
	7-10 D&T Syllabus
	7-10 D&T Support Document
	7-10 D&T Computing Studies Syllabus
	2U General Syllabus
	2/3U Common Syllabus
	3U Additional Syllabus
	Subject Manual No.6
	Glossary of Terms
	Software Specifications
	Methods of Algorithm Description
	Contents

	Urgent Official Notice BOS 65/95
	1996 Prescribed Texts, Topics, Projects and Works
	1997 Prescribed Texts, Topics, Projects and Works
	CEC Computing Applications

