

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1998 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1998. Printed in the United States of America.

ISBN 0-7381-0332-2

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 830-1998

(Revision of
IEEE Std 830-1993)

IEEE Recommended Practice for
Software Requirements
SpeciÞcations

Sponsor

Software Engineering Standards Committee
of the
IEEE Computer Society

Approved 25 June 1998

IEEE-SA Standards Board

Abstract:

 The content and qualities of a good software requirements specification (SRS) are de-
scribed and several sample SRS outlines are presented. This recommended practice is aimed at
specifying requirements of software to be developed but also can be applied to assist in the selec-
tion of in-house and commercial software products. Guidelines for compliance with IEEE/EIA
12207.1-1997 are also provided.

Keywords:

 contract, customer, prototyping, software requirements specification, supplier, system
requirements specifications

IEEE Standards

 documents are developed within the IEEE Societies and the Standards Coordinat-
ing Committees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the
committees serve voluntarily and without compensation. They are not necessarily members of the
Institute. The standards developed within IEEE represent a consensus of the broad expertise on the
subject within the Institute as well as those activities outside of IEEE that have expressed an inter-
est in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply
that there are no other ways to produce, test, measure, purchase, market, or provide other goods and
services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the
time a standard is approved and issued is subject to change brought about through developments in
the state of the art and comments received from users of the standard. Every IEEE Standard is sub-
jected to review at least every Þve years for revision or reafÞrmation. When a document is more
than Þve years old and has not been reafÞrmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reßect the present state of the art. Users are cautioned to
check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of
membership afÞliation with IEEE. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as
they relate to speciÞc applications. When the need for interpretations is brought to the attention of
IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards rep-
resent a consensus of all concerned interests, it is important to ensure that any interpretation has
also received the concurrence of a balance of interests. For this reason, IEEE and the members of its
societies and Standards Coordinating Committees are not able to provide an instant response to
interpretation requests except in those cases where the matter has previously received formal
consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is
granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate
fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact
Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA;
(978) 750-8400. Permission to photocopy portions of any individual standard for educational class-
room use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying patents for
which a license may be required by an IEEE standard or for conducting inquiries into
the legal validity or scope of those patents that are brought to its attention.

Copyright © 1998 IEEE. All rights reserved.

iii

Introduction

(This introduction is not a part of IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements SpeciÞ-
cations.)

This recommended practice describes recommended approaches for the speciÞcation of software require-
ments. It is based on a model in which the result of the software requirements speciÞcation process is an
unambiguous and complete speciÞcation document. It should help

a) Software customers to accurately describe what they wish to obtain;

b) Software suppliers to understand exactly what the customer wants;

c) Individuals to accomplish the following goals:

1) Develop a standard software requirements speciÞcation (SRS) outline for their own organiza-
tions;

2) DeÞne the format and content of their speciÞc software requirements speciÞcations;

3) Develop additional local supporting items such as an SRS quality checklist, or an SRS writerÕs
handbook.

To the customers, suppliers, and other individuals, a good SRS should provide several speciÞc beneÞts, such
as the following:

Ñ

Establish the basis for agreement between the customers and the suppliers on what the software
product is to do.

 The complete description of the functions to be performed by the software speciÞed
in the SRS will assist the potential users to determine if the software speciÞed meets their needs or
how the software must be modiÞed to meet their needs.

Ñ

Reduce the development effort.

 The preparation of the SRS forces the various concerned groups in
the customerÕs organization to consider rigorously all of the requirements before design begins and
reduces later redesign, recoding, and retesting. Careful review of the requirements in the SRS can
reveal omissions, misunderstandings, and inconsistencies early in the development cycle when these
problems are easier to correct.

Ñ

Provide a basis for estimating costs and schedules.

The description of the product to be developed as
given in the SRS is a realistic basis for estimating project costs and can be used to obtain approval for
bids or price estimates.

Ñ

Provide a baseline for validation and veriÞcation.

 Organizations can develop their validation and
veriÞcation plans much more productively from a good SRS. As a part of the development contract,
the SRS provides a baseline against which compliance can be measured.

Ñ

Facilitate transfer.

The SRS makes it easier to transfer the software product to new users or new
machines. Customers thus Þnd it easier to transfer the software to other parts of their organization,
and suppliers Þnd it easier to transfer it to new customers.

Ñ

Serve as a basis for enhancement.

 Because the SRS discusses the product but not the project that
developed it, the SRS serves as a basis for later enhancement of the Þnished product. The SRS may
need to be altered, but it does provide a foundation for continued production evaluation.

The readers of this document are referred to Annex B for guidelines for using this recommended practice to
meet the requirements of IEEE/EIA 12207.1-1997, IEEE/EIA GuideÑIndustry Implementation of ISO/IEC
12207: 1995, Standard for Information TechnologyÑSoftware life cycle processesÑLife cycle data.

iv

Copyright © 1998 IEEE. All rights reserved.

Participants

This recommended practice was prepared by the Life Cycle Data Harmonization Working Group of the Soft-
ware Engineering Standards Committee of the IEEE Computer Society. At the time this recommended prac-
tice was approved, the working group consisted of the following members:

Leonard L. Tripp,

Chair

The following persons were on the balloting committee:

Edward Byrne
Paul R. Croll
Perry DeWeese
Robin Fralick
Marilyn Ginsberg-Finner
John Harauz
Mark Henley

Dennis Lawrence
David Maibor
Ray Milovanovic
James Moore
Timothy Niesen
Dennis Rilling

Terry Rout
Richard Schmidt
Norman F. Schneidewind
David Schultz
Basil Sherlund
Peter Voldner
Ronald Wade

Syed Ali
Theodore K. Atchinson
Mikhail Auguston
Robert E. Barry
Leo Beltracchi
H. Ronald Berlack
Richard E. Biehl
Michael A. Blackledge
Sandro Bologna
Juris Borzovs
Kathleen L. Briggs
M. Scott Buck
Michael Caldwell
James E. Cardow
Enrico A. Carrara
Lawrence Catchpole
Keith Chan
Antonio M. Cicu
Theo Clarke
Sylvain Clermont
Rosemary Coleman
Virgil Lee Cooper
W. W. Geoff Cozens
Paul R. Croll
Gregory T. Daich
Geoffrey Darnton
Taz Daughtrey
Bostjan K. Derganc
Perry R. DeWeese
James Do
Evelyn S. Dow
Carl Einar Dragstedt
Sherman Eagles
Christof Ebert
Leo Egan
Richard E. Fairley
John W. Fendrich
Jay Forster
Kirby Fortenberry
Eva Freund
Richard C. Fries
Roger U. Fujii
Adel N. Ghannam
Marilyn Ginsberg-Finner
John Garth Glynn
Julio Gonzalez-Sanz
L. M. Gunther

David A. Gustafson
Jon D. Hagar
John Harauz
Robert T. Harley
Herbert Hecht
William Heßey
Manfred Hein
Mark Heinrich
Mark Henley
Debra Herrmann
John W. Horch
Jerry Huller
Peter L. Hung
George Jackelen
Frank V. Jorgensen
William S. Junk
George X. Kambic
Richard Karcich
Ron S. Kenett
Judith S. Kerner
Robert J. Kierzyk
Dwayne L. Knirk
Shaye Koenig
Thomas M. Kurihara
John B. Lane
J. Dennis Lawrence
Fang Ching Lim
William M. Lively
James J. Longbucco
Dieter Look
John Lord
Stan Magee
David Maibor
Harold Mains
Robert A. Martin
Tomoo Matsubara
Mike McAndrew
Patrick D. McCray
Christopher McMacken
Jerome W. Mersky
Bret Michael
Alan Miller
Celia H. Modell
James W. Moore
Pavol Navrat
Myrna L. Olson

Indradeb P. Pal
Alex Polack
Peter T. Poon
Lawrence S. Przybylski
Kenneth R. Ptack
Annette D. Reilly
Dennis Rilling
Andrew P. Sage
Helmut Sandmayr
Stephen R. Schach
Hans Schaefer
Norman Schneidewind
David J. Schultz
Lisa A. Selmon
Robert W. Shillato
David M. Siefert
Carl A. Singer
James M. Sivak
Richard S. Sky
Nancy M. Smith
Melford E. Smyre
Harry M. Sneed
Alfred R. Sorkowitz
Donald W. Sova
Luca Spotorno
Julia Stesney
Fred J. Strauss
Christine Brown Strysik
Toru Takeshita
Richard H. Thayer
Booker Thomas
Patricia Trellue
Theodore J. Urbanowicz
Glenn D. Venables
Udo Voges
David D. Walden
Dolores Wallace
William M. Walsh
John W. Walz
Camille SWhite-Partain
Scott A. Whitmire
P. A. Wolfgang
Paul R. Work
Natalie C. Yopconka
Janusz Zalewski
Geraldine Zimmerman
Peter F. Zoll

Copyright © 1998 IEEE. All rights reserved.

v

When the IEEE-SA Standards Board approved this recommended practice on 25 June 1998, it had the fol-
lowing membership:

Richard J. Holleman,

 Chair

Donald N. Heirman,

Vice Chair

Judith Gorman,

Secretary

*Member Emeritus

Valerie E. Zelenty

IEEE Standards Project Editor

Satish K. Aggarwal
Clyde R. Camp
James T. Carlo
Gary R. Engmann
Harold E. Epstein
Jay Forster*
Thomas F. Garrity
Ruben D. Garzon

James H. Gurney
Jim D. Isaak
Lowell G. Johnson
Robert Kennelly
E. G. ÒAlÓ Kiener
Joseph L. KoepÞnger*
Stephen R. Lambert
Jim Logothetis
Donald C. Loughry

L. Bruce McClung
Louis-Fran�ois Pau
Ronald C. Petersen
Gerald H. Peterson
John B. Posey
Gary S. Robinson
Hans E. Weinrich
Donald W. Zipse

vi

Copyright © 1998 IEEE. All rights reserved.

Contents

1. Overview.. 1

1.1 Scope.. 1

2. References.. 2

3. Definitions.. 2

4. Considerations for producing a good SRS... 3

4.1 Nature of the SRS .. 3
4.2 Environment of the SRS .. 3
4.3 Characteristics of a good SRS.. 4
4.4 Joint preparation of the SRS .. 8
4.5 SRS evolution .. 8
4.6 Prototyping... 9
4.7 Embedding design in the SRS.. 9
4.8 Embedding project requirements in the SRS... 10

5. The parts of an SRS ... 10

5.1 Introduction (Section 1 of the SRS)... 11
5.2 Overall description (Section 2 of the SRS).. 12
5.3 Specific requirements (Section 3 of the SRS).. 15
5.4 Supporting information.. 19

Annex A (informative) SRS templates.. 21

Annex B (informative) Guidelines for compliance with IEEE/EIA 12207.1-1997.................................... 27

Copyright © 1998 IEEE. All rights reserved.

1

IEEE Recommended Practice for
Software Requirements
SpeciÞcations

1. Overview

This recommended practice describes recommended approaches for the speciÞcation of software require-
ments. It is divided into Þve clauses. Clause 1 explains the scope of this recommended practice. Clause 2
lists the references made to other standards. Clause 3 provides deÞnitions of speciÞc terms used. Clause 4
provides background information for writing a good SRS. Clause 5 discusses each of the essential parts of
an SRS. This recommended practice also has two annexes, one which provides alternate format templates,
and one which provides guidelines for compliance with IEEE/EIA 12207.1-1997.

1.1 Scope

This is a recommended practice for writing software requirements speciÞcations. It describes the content
and qualities of a good software requirements speciÞcation (SRS) and presents several sample SRS outlines.

This recommended practice is aimed at specifying requirements of software to be developed but also can be
applied to assist in the selection of in-house and commercial software products. However, application to
already-developed software could be counterproductive.

When software is embedded in some larger system, such as medical equipment, then issues beyond those
identiÞed in this recommended practice may have to be addressed.

This recommended practice describes the process of creating a product and the content of the product. The
product is an SRS. This recommended practice can be used to create such an SRS directly or can be used as
a model for a more speciÞc standard.

This recommended practice does not identify any speciÞc method, nomenclature, or tool for preparing an
SRS.

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

2

Copyright © 1998 IEEE. All rights reserved.

2. References

This recommended practice shall be used in conjunction with the following publications.

ASTM E1340-96, Standard Guide for Rapid Prototyping of Computerized Systems.

1

IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.

2

IEEE Std 730-1998, IEEE Standard for Software Quality Assurance Plans.

IEEE Std 730.1-1995, IEEE Guide for Software Quality Assurance Planning.

IEEE Std 828-1998, IEEE Standard for Software ConÞguration Management Plans.

3

IEEE Std 982.1-1988, IEEE Standard Dictionary of Measures to Produce Reliable Software.

IEEE Std 982.2-1988, IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reli-
able Software.

IEEE Std 1002-1987 (Reaff 1992), IEEE Standard Taxonomy for Software Engineering Standards.

IEEE Std 1012-1998, IEEE Standard for Software VeriÞcation and Validation.

IEEE Std 1012a-1998, IEEE Standard for Software VeriÞcation and Validation: Content Map to IEEE/EIA
12207.1-1997.

4

IEEE Std 1016-1998, IEEE Recommended Practice for Software Design Descriptions.

5

IEEE Std 1028-1997, IEEE Standard for Software Reviews.

IEEE Std 1042-1987 (Reaff 1993), IEEE Guide to Software ConÞguration Management.

IEEE P1058/D2.1, Draft Standard for Software Project Management Plans, dated 5 August 1998.

6

IEEE Std 1058a-1998, IEEE Standard for Software Project Management Plans: Content Map to IEEE/EIA
12207.1-1997.

7

IEEE Std 1074-1997, IEEE Standard for Developing Software Life Cycle Processes.

IEEE Std 1233, 1998 Edition, IEEE Guide for Developing System Requirements SpeciÞcations.

8

1

ASTM publications are available from the American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken,
PA 19428-2959, USA.

2

IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA.

3

As this standard goes to press, IEEE Std 828-1998; IEEE Std 1012a-1998; IEEE Std 1016-1998; and IEEE Std 1233, 1998 Edition are
approved but not yet published. The draft standards are, however, available from the IEEE. Anticipated publication date is Fall 1998.
Contact the IEEE Standards Department at 1 (732) 562-3800 for status information.

4

See Footnote 3.

5

See Footnote 3.

6

Upon approval of IEEE P1058 by the IEEE-SA Standards Board, this standard will be integrated with IEEE Std 1058a-1998 and
published as IEEE Std 1058, 1998 Edition. Approval is expected 8 December 1998.

7

As this standard goes to press, IEEE Std 1058a-1998 is approved but not yet published. The draft standard is, however, available from
the IEEE. Anticipated publication date is December 1998. Contact the IEEE Standards Department at 1 (732) 562-3800 for status
information. See Footnote 6.

8

See Footnote 3.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved.

3

3. DeÞnitions

In general the deÞnitions of terms used in this recommended practice conform to the deÞnitions provided in
IEEE Std 610.12-1990. The deÞnitions below are key terms as they are used in this recommended practice.

3.1 contract:

 A legally binding document agreed upon by the customer and supplier. This includes the tech-
nical and organizational requirements, cost, and schedule for a product. A contract may also contain infor-
mal but useful information such as the commitments or expectations of the parties involved.

3.2 customer:

The person, or persons, who pay for the product and usually (but not necessarily) decide the
requirements. In the context of this recommended practice the customer and the supplier may be members of
the same organization.

3.3 supplier:

The person, or persons, who produce a product for a customer. In the context of this recom-
mended practice, the customer and the supplier may be members of the same organization.

3.4 user:

 The person, or persons, who operate or interact directly with the product. The user(s) and the
customer(s) are often not the same person(s).

4. Considerations for producing a good SRS

This clause provides background information that should be considered when writing an SRS. This includes
the following:

a) Nature of the SRS;
b) Environment of the SRS;
c) Characteristics of a good SRS;
d) Joint preparation of the SRS;
e) SRS evolution;
f) Prototyping;
g) Embedding design in the SRS;
h) Embedding project requirements in the SRS.

4.1 Nature of the SRS

The SRS is a speciÞcation for a particular software product, program, or set of programs that performs
certain functions in a speciÞc environment. The SRS may be written by one or more representatives of the
supplier, one or more representatives of the customer, or by both. Subclause 4.4 recommends both.

The basic issues that the SRS writer(s) shall address are the following:

a)

Functionality.

 What is the software supposed to do?

b)

External interfaces.

How does the software interact with people, the systemÕs hardware, other hard-
ware, and other software?

c)

Performance.

 What is the speed, availability, response time, recovery time of various software func-
tions, etc.?

d)

Attributes.

 What are the portability, correctness, maintainability, security, etc. considerations?

e)

Design constraints imposed on an implementation.

 Are there any required standards in effect, imple-
mentation language, policies for database integrity, resource limits, operating environment(s) etc.?

The SRS writer(s) should avoid placing either design or project requirements in the SRS.

For recommended contents of an SRS see Clause 5.

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

4

Copyright © 1998 IEEE. All rights reserved.

4.2 Environment of the SRS

It is important to consider the part that the SRS plays in the total project plan, which is deÞned in IEEE Std
610.12-1990. The software may contain essentially all the functionality of the project or it may be part of a
larger system. In the latter case typically there will be an SRS that will state the interfaces between the
system and its software portion, and will place external performance and functionality requirements upon
the software portion. Of course the SRS should then agree with and expand upon these system requirements.

IEEE Std 1074-1997 describes the steps in the software life cycle and the applicable inputs for each step.
Other standards, such as those listed in Clause 2, relate to other parts of the software life cycle and so may
complement software requirements.

Since the SRS has a speciÞc role to play in the software development process, the SRS writer(s) should be
careful not to go beyond the bounds of that role. This means the SRS

a) Should correctly deÞne all of the software requirements. A software requirement may exist because
of the nature of the task to be solved or because of a special characteristic of the project.

b) Should not describe any design or implementation details. These should be described in the design
stage of the project.

c) Should not impose additional constraints on the software. These are properly speciÞed in other
documents such as a software quality assurance plan.

Therefore, a properly written SRS limits the range of valid designs, but does not specify any particular
design.

4.3 Characteristics of a good SRS

An SRS should be

a) Correct;
b) Unambiguous;
c) Complete;
d) Consistent;
e) Ranked for importance and/or stability;
f) VeriÞable;
g) ModiÞable;
h) Traceable.

4.3.1 Correct

An SRS is correct if, and only if, every requirement stated therein is one that the software shall meet.

There is no tool or procedure that ensures correctness. The SRS should be compared with any applicable
superior speciÞcation, such as a system requirements speciÞcation, with other project documentation, and
with other applicable standards, to ensure that it agrees. Alternatively the customer or user can determine if
the SRS correctly reßects the actual needs. Traceability makes this procedure easier and less prone to error
(see 4.3.8).

4.3.2 Unambiguous

An SRS is unambiguous if, and only if, every requirement stated therein has only one interpretation. As a
minimum, this requires that each characteristic of the Þnal product be described using a single unique term.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved.

5

In cases where a term used in a particular context could have multiple meanings, the term should be included
in a glossary where its meaning is made more speciÞc.

An SRS is an important part of the requirements process of the software life cycle and is used in design,
implementation, project monitoring, veriÞcation and validation, and in training as described in IEEE Std
1074-1997. The SRS should be unambiguous both to those who create it and to those who use it. However,
these groups often do not have the same background and therefore do not tend to describe software require-
ments the same way. Representations that improve the requirements speciÞcation for the developer may be
counterproductive in that they diminish understanding to the user and vice versa.

Subclauses 4.3.2.1 through 4.3.2.3 recommend how to avoid ambiguity.

4.3.2.1 Natural language pitfalls

Requirements are often written in natural language (e.g., English). Natural language is inherently ambigu-
ous. A natural language SRS should be reviewed by an independent party to identify ambiguous use of
language so that it can be corrected.

4.3.2.2 Requirements speciÞcation languages

One way to avoid the ambiguity inherent in natural language is to write the SRS in a particular requirements
speciÞcation language. Its language processors automatically detect many lexical, syntactic, and semantic
errors.

One disadvantage in the use of such languages is the length of time required to learn them. Also, many non-
technical users Þnd them unintelligible. Moreover, these languages tend to be better at expressing certain
types of requirements and addressing certain types of systems. Thus, they may inßuence the requirements in
subtle ways.

4.3.2.3 Representation tools

In general, requirements methods and languages and the tools that support them fall into three general cate-
goriesÑobject, process, and behavioral. Object-oriented approaches organize the requirements in terms of
real-world objects, their attributes, and the services performed by those objects. Process-based approaches
organize the requirements into hierarchies of functions that communicate via data ßows. Behavioral
approaches describe external behavior of the system in terms of some abstract notion (such as predicate
calculus), mathematical functions, or state machines.

The degree to which such tools and methods may be useful in preparing an SRS depends upon the size and
complexity of the program. No attempt is made here to describe or endorse any particular tool.

When using any of these approaches it is best to retain the natural language descriptions. That way, custom-
ers unfamiliar with the notations can still understand the SRS.

4.3.3 Complete

An SRS is complete if, and only if, it includes the following elements:

a) All signiÞcant requirements, whether relating to functionality, performance, design constraints,
attributes, or external interfaces. In particular any external requirements imposed by a system speci-
Þcation should be acknowledged and treated.

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

6

Copyright © 1998 IEEE. All rights reserved.

b) DeÞnition of the responses of the software to all realizable classes of input data in all realizable
classes of situations. Note that it is important to specify the responses to both valid and invalid input
values.

c) Full labels and references to all Þgures, tables, and diagrams in the SRS and deÞnition of all terms
and units of measure.

4.3.3.1 Use of TBDs

Any SRS that uses the phrase Òto be determinedÓ (TBD) is not a complete SRS. The TBD is, however, occa-
sionally necessary and should be accompanied by

a) A description of the conditions causing the TBD (e.g., why an answer is not known) so that the situ-
ation can be resolved;

b) A description of what must be done to eliminate the TBD, who is responsible for its elimination, and
by when it must be eliminated.

4.3.4 Consistent

Consistency refers to internal consistency. If an SRS does not agree with some higher-level document, such
as a system requirements speciÞcation, then it is not correct (see 4.3.1).

4.3.4.1 Internal consistency

An SRS is internally consistent if, and only if, no subset of individual requirements described in it conßict.
The three types of likely conßicts in an SRS are as follows:

a) The speciÞed characteristics of real-world objects may conßict. For example,

1) The format of an output report may be described in one requirement as tabular but in another as
textual.

2) One requirement may state that all lights shall be green while another may state that all lights
shall be blue.

b) There may be logical or temporal conßict between two speciÞed actions. For example,

1) One requirement may specify that the program will add two inputs and another may specify
that the program will multiply them.

2) One requirement may state that ÒAÓ must always follow ÒB,Ó while another may require that ÒA
and BÓ occur simultaneously.

c) Two or more requirements may describe the same real-world object but use different terms for that
object. For example, a programÕs request for a user input may be called a ÒpromptÓ in one require-
ment and a ÒcueÓ in another. The use of standard terminology and deÞnitions promotes consistency.

4.3.5 Ranked for importance and/or stability

An SRS is ranked for importance and/or stability if each requirement in it has an identiÞer to indicate either
the importance or stability of that particular requirement.

Typically, all of the requirements that relate to a software product are not equally important. Some require-
ments may be essential, especially for life-critical applications, while others may be desirable.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved.

7

Each requirement in the SRS should be identiÞed to make these differences clear and explicit. Identifying
the requirements in the following manner helps:

a) Have customers give more careful consideration to each requirement, which often clariÞes any
hidden assumptions they may have.

b) Have developers make correct design decisions and devote appropriate levels of effort to the differ-
ent parts of the software product.

4.3.5.1 Degree of stability

One method of identifying requirements uses the dimension of stability. Stability can be expressed in terms
of the number of expected changes to any requirement based on experience or knowledge of forthcoming
events that affect the organization, functions, and people supported by the software system.

4.3.5.2 Degree of necessity

Another way to rank requirements is to distinguish classes of requirements as essential, conditional, and
optional.

a)

Essential.

 Implies that the software will not be acceptable unless these requirements are provided in
an agreed manner.

b)

Conditional.

 Implies that these are requirements that would enhance the software product, but would
not make it unacceptable if they are absent.

c)

Optional.

 Implies a class of functions that may or may not be worthwhile. This gives the supplier the
opportunity to propose something that exceeds the SRS.

4.3.6 VeriÞable

An SRS is veriÞable if, and only if, every requirement stated therein is veriÞable. A requirement is veriÞable
if, and only if, there exists some Þnite cost-effective process with which a person or machine can check that
the software product meets the requirement. In general any ambiguous requirement is not veriÞable.

NonveriÞable requirements include statements such as Òworks well,Ó Ògood human interface,Ó and Òshall
usually happen.Ó These requirements cannot be veriÞed because it is impossible to deÞne the terms Ògood,Ó
Òwell,Ó or Òusually.Ó The statement that Òthe program shall never enter an inÞnite loopÓ is nonveriÞable
because the testing of this quality is theoretically impossible.

An example of a veriÞable statement is

Output of the program shall be produced within 20 s of event

´

60% of the time; and shall be
produced within 30 s of event

´

100% of the time.

This statement can be veriÞed because it uses concrete terms and measurable quantities.

If a method cannot be devised to determine whether the software meets a particular requirement, then that
requirement should be removed or revised.

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

8

Copyright © 1998 IEEE. All rights reserved.

4.3.7 ModiÞable

An SRS is modiÞable if, and only if, its structure and style are such that any changes to the requirements can
be made easily, completely, and consistently while retaining the structure and style. ModiÞability generally
requires an SRS to

a) Have a coherent and easy-to-use organization with a table of contents, an index, and explicit cross-
referencing;

b) Not be redundant (i.e., the same requirement should not appear in more than one place in the SRS);

c) Express each requirement separately, rather than intermixed with other requirements.

Redundancy itself is not an error, but it can easily lead to errors. Redundancy can occasionally help to make
an SRS more readable, but a problem can arise when the redundant document is updated. For instance, a
requirement may be altered in only one of the places where it appears. The SRS then becomes inconsistent.
Whenever redundancy is necessary, the SRS should include explicit cross-references to make it modiÞable.

4.3.8 Traceable

An SRS is traceable if the origin of each of its requirements is clear and if it facilitates the referencing of
each requirement in future development or enhancement documentation. The following two types of trace-
ability are recommended:

a)

Backward traceability (i.e., to previous stages of development).

 This depends upon each requirement
explicitly referencing its source in earlier documents.

b)

Forward traceability (i.e., to all documents spawned by the SRS).

 This depends upon each require-
ment in the SRS having a unique name or reference number.

The forward traceability of the SRS is especially important when the software product enters the operation
and maintenance phase. As code and design documents are modiÞed, it is essential to be able to ascertain the
complete set of requirements that may be affected by those modiÞcations.

4.4 Joint preparation of the SRS

The software development process should begin with supplier and customer agreement on what the
completed software must do. This agreement, in the form of an SRS, should be jointly prepared. This is
important because usually neither the customer nor the supplier is qualiÞed to write a good SRS alone.

a) Customers usually do not understand the software design and development process well enough to
write a usable SRS.

b) Suppliers usually do not understand the customerÕs problem and Þeld of endeavor well enough to
specify requirements for a satisfactory system.

Therefore, the customer and the supplier should work together to produce a well-written and completely
understood SRS.

A special situation exists when a system and its software are both being deÞned concurrently. Then the func-
tionality, interfaces, performance, and other attributes and constraints of the software are not predeÞned, but
rather are jointly deÞned and subject to negotiation and change. This makes it more difÞcult, but no less
important, to meet the characteristics stated in 4.3. In particular, an SRS that does not comply with the
requirements of its parent system speciÞcation is incorrect.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved.

9

This recommended practice does not speciÞcally discuss style, language usage, or techniques of good writ-
ing. It is quite important, however, that an SRS be well written. General technical writing books can be used
for guidance.

4.5 SRS evolution

The SRS may need to evolve as the development of the software product progresses. It may be impossible to
specify some details at the time the project is initiated (e.g., it may be impossible to deÞne all of the screen
formats for an interactive program during the requirements phase). Additional changes may ensue as deÞ-
ciencies, shortcomings, and inaccuracies are discovered in the SRS.

Two major considerations in this process are the following:

a) Requirements should be speciÞed as completely and thoroughly as is known at the time, even if
evolutionary revisions can be foreseen as inevitable. The fact that they are incomplete should be
noted.

b) A formal change process should be initiated to identify, control, track, and report projected changes.
Approved changes in requirements should be incorporated in the SRS in such a way as to

1) Provide an accurate and complete audit trail of changes;
2) Permit the review of current and superseded portions of the SRS.

4.6 Prototyping

Prototyping is used frequently during the requirements portion of a project. Many tools exist that allow a
prototype, exhibiting some characteristics of a system, to be created very quickly and easily. See also ASTM
E1340-96.

Prototypes are useful for the following reasons:

a) The customer may be more likely to view the prototype and react to it than to read the SRS and react
to it. Thus, the prototype provides quick feedback.

b) The prototype displays unanticipated aspects of the systems behavior. Thus, it produces not only
answers but also new questions. This helps reach closure on the SRS.

c) An SRS based on a prototype tends to undergo less change during development, thus shortening
development time.

A prototype should be used as a way to elicit software requirements. Some characteristics such as screen or
report formats can be extracted

directly

from the prototype. Other requirements can be inferred by running
experiments with the prototype.

4.7 Embedding design in the SRS

A requirement speciÞes an externally visible function or attribute of a system. A design describes a particu-
lar subcomponent of a system and/or its interfaces with other subcomponents. The SRS writer(s) should
clearly distinguish between identifying required design constraints and projecting a speciÞc design. Note
that every requirement in the SRS limits design alternatives. This does not mean, though, that every require-
ment is design.

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

10

Copyright © 1998 IEEE. All rights reserved.

The SRS should specify what functions are to be performed on what data to produce what results at what
location for whom. The SRS should focus on the services to be performed. The SRS should not normally
specify design items such as the following:

a) Partitioning the software into modules;
b) Allocating functions to the modules;
c) Describing the ßow of information or control between modules;
d) Choosing data structures.

4.7.1 Necessary design requirements

In special cases some requirements may severely restrict the design. For example, security or safety require-
ments may reßect directly into design such as the need to

a) Keep certain functions in separate modules;
b) Permit only limited communication between some areas of the program;
c) Check data integrity for critical variables.

Examples of valid design constraints are physical requirements, performance requirements, software devel-
opment standards, and software quality assurance standards.

Therefore, the requirements should be stated from a purely external viewpoint. When using models to illus-
trate the requirements, remember that the model only indicates the external behavior, and does not specify a
design.

4.8 Embedding project requirements in the SRS

The SRS should address the software product, not the process of producing the software product.

Project requirements represent an understanding between the customer and the supplier about contractual
matters pertaining to production of software and thus should not be included in the SRS. These normally
include items such as

a) Cost;
b) Delivery schedules;
c) Reporting procedures;
d) Software development methods;
e) Quality assurance;
f) Validation and veriÞcation criteria;
g) Acceptance procedures.

Project requirements are speciÞed in other documents, typically in a software development plan, a software
quality assurance plan, or a statement of work.

5. The parts of an SRS

This clause discusses each of the essential parts of the SRS. These parts are arranged in Figure 1 in an
outline that can serve as an example for writing an SRS.

While an SRS does not have to follow this outline or use the names given here for its parts, a good SRS
should include all the information discussed here.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved.

11

5.1 Introduction (Section 1 of the SRS)

The introduction of the SRS should provide an overview of the entire SRS. It should contain the following
subsections:

a) Purpose;
b) Scope;
c) DeÞnitions, acronyms, and abbreviations;
d) References;
e) Overview.

5.1.1 Purpose (1.1 of the SRS)

This subsection should

a) Delineate the purpose of the SRS;
b) Specify the intended audience for the SRS.

5.1.2 Scope (1.2 of the SRS)

This subsection should

a) Identify the software product(s) to be produced by name (e.g., Host DBMS, Report Generator, etc.);

b) Explain what the software product(s) will, and, if necessary, will not do;

c) Describe the application of the software being speciÞed, including relevant beneÞts, objectives, and
goals;

d) Be consistent with similar statements in higher-level speciÞcations (e.g., the system requirements
speciÞcation), if they exist.

Figure 1ÑPrototype SRS outline

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms, and abbreviations

1.4 References

1.5 Overview

2. Overall description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing
this section of the SRS.)

Appendixes

Index

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

12

Copyright © 1998 IEEE. All rights reserved.

5.1.3 DeÞnitions, acronyms, and abbreviations (1.3 of the SRS)

This subsection should provide the deÞnitions of all terms, acronyms, and abbreviations required to properly
interpret the SRS. This information may be provided by reference to one or more appendixes in the SRS or
by reference to other documents.

5.1.4 References (1.4 of the SRS)

This subsection should

a) Provide a complete list of all documents referenced elsewhere in the SRS;
b) Identify each document by title, report number (if applicable), date, and publishing organization;
c) Specify the sources from which the references can be obtained.

This information may be provided by reference to an appendix or to another document.

5.1.5 Overview (1.5 of the SRS)

This subsection should

a) Describe what the rest of the SRS contains;
b) Explain how the SRS is organized.

5.2 Overall description (Section 2 of the SRS)

This section of the SRS should describe the general factors that affect the product and its requirements. This
section does not state speciÞc requirements. Instead, it provides a background for those requirements, which
are deÞned in detail in Section 3 of the SRS, and makes them easier to understand.

This section usually consists of six subsections, as follows:

a) Product perspective;
b) Product functions;
c) User characteristics;
d) Constraints;
e) Assumptions and dependencies;
f) Apportioning of requirements.

5.2.1 Product perspective (2.1 of the SRS)

This subsection of the SRS should put the product into perspective with other related products. If the product
is independent and totally self-contained, it should be so stated here. If the SRS deÞnes a product that is a
component of a larger system, as frequently occurs, then this subsection should relate the requirements of
that larger system to functionality of the software and should identify interfaces between that system and the
software.

A block diagram showing the major components of the larger system, interconnections, and external inter-
faces can be helpful.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved.

13

This subsection should also describe how the software operates inside various constraints. For example,
these constraints could include

a) System interfaces;
b) User interfaces;
c) Hardware interfaces;
d) Software interfaces;
e) Communications interfaces;
f) Memory;
g) Operations;
h) Site adaptation requirements.

5.2.1.1 System interfaces

This should list each system interface and identify the functionality of the software to accomplish the system
requirement and the interface description to match the system.

5.2.1.2 User interfaces

This should specify the following:

a)

The logical characteristics of each interface between the software product and its users.

 This
includes those conÞguration characteristics (e.g., required screen formats, page or window layouts,
content of any reports or menus, or availability of programmable function keys) necessary to accom-
plish the software requirements.

b)

All the aspects of optimizing the interface with the person who must use the system.

 This may simply
comprise a list of doÕs and donÕts on how the system will appear to the user. One example may be a
requirement for the option of long or short error messages. Like all others, these requirements
should be veriÞable, e.g., Òa clerk typist grade 4 can do function

X

 in

Z

 min after 1 h of trainingÓ
rather than Òa typist can do function

X.

Ó (This may also be speciÞed in the Software System
Attributes under a section titled Ease of Use.)

5.2.1.3 Hardware interfaces

This should specify the logical characteristics of each interface between the software product and the hard-
ware components of the system. This includes conÞguration characteristics (number of ports, instruction
sets, etc.). It also covers such matters as what devices are to be supported, how they are to be supported, and
protocols. For example, terminal support may specify full-screen support as opposed to line-by-line support.

5.2.1.4 Software interfaces

This should specify the use of other required software products (e.g., a data management system, an operat-
ing system, or a mathematical package), and interfaces with other application systems (e.g., the linkage
between an accounts receivable system and a general ledger system). For each required software product, the
following should be provided:

Ñ Name;
Ñ Mnemonic;
Ñ SpeciÞcation number;
Ñ Version number;
Ñ Source.

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

14

Copyright © 1998 IEEE. All rights reserved.

For each interface, the following should be provided:

Ñ Discussion of the purpose of the interfacing software as related to this software product.

Ñ DeÞnition of the interface in terms of message content and format. It is not necessary to detail any
well-documented interface, but a reference to the document deÞning the interface is required.

5.2.1.5 Communications interfaces

This should specify the various interfaces to communications such as local network protocols, etc.

5.2.1.6 Memory constraints

This should specify any applicable characteristics and limits on primary and secondary memory.

5.2.1.7 Operations

This should specify the normal and special operations required by the user such as

a) The various modes of operations in the user organization (e.g., user-initiated operations);
b) Periods of interactive operations and periods of unattended operations;
c) Data processing support functions;
d) Backup and recovery operations.

NOTEÑThis is sometimes speciÞed as part of the User Interfaces section.

5.2.1.8 Site adaptation requirements

This should

a) DeÞne the requirements for any data or initialization sequences that are speciÞc to a given site,
mission, or operational mode (e.g., grid values, safety limits, etc.);

b) Specify the site or mission-related features that should be modiÞed to adapt the software to a partic-
ular installation.

5.2.2 Product functions (2.2 of the SRS)

This subsection of the SRS should provide a summary of the major functions that the software will perform.
For example, an SRS for an accounting program may use this part to address customer account maintenance,
customer statement, and invoice preparation without mentioning the vast amount of detail that each of those
functions requires.

Sometimes the function summary that is necessary for this part can be taken directly from the section of the
higher-level speciÞcation (if one exists) that allocates particular functions to the software product. Note that
for the sake of clarity

a) The functions should be organized in a way that makes the list of functions understandable to the
customer or to anyone else reading the document for the Þrst time.

b) Textual or graphical methods can be used to show the different functions and their relationships.
Such a diagram is not intended to show a design of a product, but simply shows the logical relation-
ships among variables.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved.

15

5.2.3 User characteristics (2.3 of the SRS)

This subsection of the SRS should describe those general characteristics of the intended users of the product
including educational level, experience, and technical expertise. It should not be used to state speciÞc
requirements, but rather should provide the reasons why certain speciÞc requirements are later speciÞed in
Section 3 of the SRS.

5.2.4 Constraints (2.4 of the SRS)

This subsection of the SRS should provide a general description of any other items that will limit the devel-
operÕs options. These include

a) Regulatory policies;
b) Hardware limitations (e.g., signal timing requirements);
c) Interfaces to other applications;
d) Parallel operation;
e) Audit functions;
f) Control functions;
g) Higher-order language requirements;
h) Signal handshake protocols (e.g., XON-XOFF, ACK-NACK);
i) Reliability requirements;
j) Criticality of the application;
k) Safety and security considerations.

5.2.5 Assumptions and dependencies (2.5 of the SRS)

This subsection of the SRS should list each of the factors that affect the requirements stated in the SRS.
These factors are not design constraints on the software but are, rather, any changes to them that can affect
the requirements in the SRS. For example, an assumption may be that a speciÞc operating system will be
available on the hardware designated for the software product. If, in fact, the operating system is not avail-
able, the SRS would then have to change accordingly.

5.2.6 Apportioning of requirements (2.6 of the SRS)

This subsection of the SRS should identify requirements that may be delayed until future versions of the
system.

5.3 SpeciÞc requirements (Section 3 of the SRS)

This section of the SRS should contain all of the software requirements to a level of detail sufÞcient to
enable designers to design a system to satisfy those requirements, and testers to test that the system satisÞes
those requirements. Throughout this section, every stated requirement should be externally perceivable by
users, operators, or other external systems. These requirements should include at a minimum a description of
every input (stimulus) into the system, every output (response) from the system, and all functions performed
by the system in response to an input or in support of an output. As this is often the largest and most impor-
tant part of the SRS, the following principles apply:

a) SpeciÞc requirements should be stated in conformance with all the characteristics described in 4.3.
b) SpeciÞc requirements should be cross-referenced to earlier documents that relate.
c) All requirements should be uniquely identiÞable.
d) Careful attention should be given to organizing the requirements to maximize readability.

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

16

Copyright © 1998 IEEE. All rights reserved.

Before examining speciÞc ways of organizing the requirements it is helpful to understand the various items
that comprise requirements as described in 5.3.1 through 5.3.7.

5.3.1 External interfaces

This should be a detailed description of all inputs into and outputs from the software system. It should
complement the interface descriptions in 5.2 and should not repeat information there.

It should include both content and format as follows:

a) Name of item;
b) Description of purpose;
c) Source of input or destination of output;
d) Valid range, accuracy, and/or tolerance;
e) Units of measure;
f) Timing;
g) Relationships to other inputs/outputs;
h) Screen formats/organization;
i) Window formats/organization;
j) Data formats;
k) Command formats;
l) End messages.

5.3.2 Functions

Functional requirements should deÞne the fundamental actions that must take place in the software in
accepting and processing the inputs and in processing and generating the outputs. These are generally listed
as ÒshallÓ statements starting with ÒThe system shallÉÓ

These include

a) Validity checks on the inputs
b) Exact sequence of operations
c) Responses to abnormal situations, including

1) Overßow
2) Communication facilities
3) Error handling and recovery

d) Effect of parameters
e) Relationship of outputs to inputs, including

1) Input/output sequences
2) Formulas for input to output conversion

It may be appropriate to partition the functional requirements into subfunctions or subprocesses. This does
not imply that the software design will also be partitioned that way.

5.3.3 Performance requirements

This subsection should specify both the static and the dynamic numerical requirements placed on the soft-
ware or on human interaction with the software as a whole. Static numerical requirements may include the
following:

a) The number of terminals to be supported;
b) The number of simultaneous users to be supported;
c) Amount and type of information to be handled.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved. 17

Static numerical requirements are sometimes identiÞed under a separate section entitled Capacity.

Dynamic numerical requirements may include, for example, the numbers of transactions and tasks and the
amount of data to be processed within certain time periods for both normal and peak workload conditions.

All of these requirements should be stated in measurable terms.

For example,

95% of the transactions shall be processed in less than 1 s.

rather than,

An operator shall not have to wait for the transaction to complete.

NOTEÑNumerical limits applied to one speciÞc function are normally speciÞed as part of the processing subparagraph
description of that function.

5.3.4 Logical database requirements

This should specify the logical requirements for any information that is to be placed into a database. This
may include the following:

a) Types of information used by various functions;
b) Frequency of use;
c) Accessing capabilities;
d) Data entities and their relationships;
e) Integrity constraints;
f) Data retention requirements.

5.3.5 Design constraints

This should specify design constraints that can be imposed by other standards, hardware limitations, etc.

5.3.5.1 Standards compliance

This subsection should specify the requirements derived from existing standards or regulations. They may
include the following:

a) Report format;
b) Data naming;
c) Accounting procedures;
d) Audit tracing.

For example, this could specify the requirement for software to trace processing activity. Such traces are
needed for some applications to meet minimum regulatory or Þnancial standards. An audit trace requirement
may, for example, state that all changes to a payroll database must be recorded in a trace Þle with before and
after values.

5.3.6 Software system attributes

There are a number of attributes of software that can serve as requirements. It is important that required
attributes be speciÞed so that their achievement can be objectively veriÞed. Subclauses 5.3.6.1 through
5.3.6.5 provide a partial list of examples.

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

18 Copyright © 1998 IEEE. All rights reserved.

5.3.6.1 Reliability

This should specify the factors required to establish the required reliability of the software system at time of
delivery.

5.3.6.2 Availability

This should specify the factors required to guarantee a deÞned availability level for the entire system such as
checkpoint, recovery, and restart.

5.3.6.3 Security

This should specify the factors that protect the software from accidental or malicious access, use, modiÞca-
tion, destruction, or disclosure. SpeciÞc requirements in this area could include the need to

a) Utilize certain cryptographical techniques;
b) Keep speciÞc log or history data sets;
c) Assign certain functions to different modules;
d) Restrict communications between some areas of the program;
e) Check data integrity for critical variables.

5.3.6.4 Maintainability

This should specify attributes of software that relate to the ease of maintenance of the software itself. There
may be some requirement for certain modularity, interfaces, complexity, etc. Requirements should not be
placed here just because they are thought to be good design practices.

5.3.6.5 Portability

This should specify attributes of software that relate to the ease of porting the software to other host
machines and/or operating systems. This may include the following:

a) Percentage of components with host-dependent code;
b) Percentage of code that is host dependent;
c) Use of a proven portable language;
d) Use of a particular compiler or language subset;
e) Use of a particular operating system.

5.3.7 Organizing the speciÞc requirements

For anything but trivial systems the detailed requirements tend to be extensive. For this reason, it is recom-
mended that careful consideration be given to organizing these in a manner optimal for understanding. There
is no one optimal organization for all systems. Different classes of systems lend themselves to different orga-
nizations of requirements in Section 3 of the SRS. Some of these organizations are described in 5.3.7.1
through 5.3.7.7.

5.3.7.1 System mode

Some systems behave quite differently depending on the mode of operation. For example, a control system
may have different sets of functions depending on its mode: training, normal, or emergency. When organiz-
ing this section by mode, the outline in A.1 or A.2 should be used. The choice depends on whether interfaces
and performance are dependent on mode.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved. 19

5.3.7.2 User class

Some systems provide different sets of functions to different classes of users. For example, an elevator
control system presents different capabilities to passengers, maintenance workers, and Þre Þghters. When
organizing this section by user class, the outline in A.3 should be used.

5.3.7.3 Objects

Objects are real-world entities that have a counterpart within the system. For example, in a patient monitor-
ing system, objects include patients, sensors, nurses, rooms, physicians, medicines, etc. Associated with
each object is a set of attributes (of that object) and functions (performed by that object). These functions are
also called services, methods, or processes. When organizing this section by object, the outline in A.4 should
be used. Note that sets of objects may share attributes and services. These are grouped together as classes.

5.3.7.4 Feature

A feature is an externally desired service by the system that may require a sequence of inputs to effect the
desired result. For example, in a telephone system, features include local call, call forwarding, and confer-
ence call. Each feature is generally described in a sequence of stimulus-response pairs. When organizing this
section by feature, the outline in A.5 should be used.

5.3.7.5 Stimulus

Some systems can be best organized by describing their functions in terms of stimuli. For example, the func-
tions of an automatic aircraft landing system may be organized into sections for loss of power, wind shear,
sudden change in roll, vertical velocity excessive, etc. When organizing this section by stimulus, the outline
in A.6 should be used.

5.3.7.6 Response

Some systems can be best organized by describing all the functions in support of the generation of a
response. For example, the functions of a personnel system may be organized into sections corresponding to
all functions associated with generating paychecks, all functions associated with generating a current list of
employees, etc. The outline in A.6 (with all occurrences of stimulus replaced with response) should be used.

5.3.7.7 Functional hierarchy

When none of the above organizational schemes prove helpful, the overall functionality can be organized
into a hierarchy of functions organized by either common inputs, common outputs, or common internal data
access. Data ßow diagrams and data dictionaries can be used to show the relationships between and among
the functions and data. When organizing this section by functional hierarchy, the outline in A.7 should be
used.

5.3.8 Additional comments

Whenever a new SRS is contemplated, more than one of the organizational techniques given in 5.3.7.7 may
be appropriate. In such cases, organize the speciÞc requirements for multiple hierarchies tailored to the
speciÞc needs of the system under speciÞcation. For example, see A.8 for an organization combining user
class and feature. Any additional requirements may be put in a separate section at the end of the SRS.

There are many notations, methods, and automated support tools available to aid in the documentation of
requirements. For the most part, their usefulness is a function of organization. For example, when organizing
by mode, Þnite state machines or state charts may prove helpful; when organizing by object, object-oriented

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

20 Copyright © 1998 IEEE. All rights reserved.

analysis may prove helpful; when organizing by feature, stimulus-response sequences may prove helpful;
and when organizing by functional hierarchy, data ßow diagrams and data dictionaries may prove helpful.

In any of the outlines given in A.1 through A.8, those sections called ÒFunctional Requirement iÓ may be
described in native language (e.g., English), in pseudocode, in a system deÞnition language, or in four sub-
sections titled: Introduction, Inputs, Processing, and Outputs.

5.4 Supporting information

The supporting information makes the SRS easier to use. It includes the following:

a) Table of contents;
b) Index;
c) Appendixes.

5.4.1 Table of contents and index

The table of contents and index are quite important and should follow general compositional practices.

5.4.2 Appendixes

The appendixes are not always considered part of the actual SRS and are not always necessary. They may
include

a) Sample input/output formats, descriptions of cost analysis studies, or results of user surveys;
b) Supporting or background information that can help the readers of the SRS;
c) A description of the problems to be solved by the software;
d) Special packaging instructions for the code and the media to meet security, export, initial loading, or

other requirements.

When appendixes are included, the SRS should explicitly state whether or not the appendixes are to be
considered part of the requirements.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved. 21

Annex A

(informative)

SRS templates

A.1 Template of SRS Section 3 organized by mode: Version 1

3. SpeciÞc requirements
3.1 External interface requirements

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces

3.2 Functional requirements
3.2.1 Mode 1

3.2.1.1 Functional requirement 1.1
.
.
.
3.2.1.n Functional requirement 1.n

3.2.2 Mode 2
.
.
.
3.2.m Mode m

3.2.m.1 Functional requirement m.1
.
.
.
3.2.m.n Functional requirement m.n

3.3 Performance requirements
3.4 Design constraints
3.5 Software system attributes
3.6 Other requirements

A.2 Template of SRS Section 3 organized by mode: Version 2

3. SpeciÞc requirements
3.1. Functional requirements

3.1.1 Mode 1
3.1.1.1 External interfaces

3.1.1.1.1 User interfaces
3.1.1.1.2 Hardware interfaces
3.1.1.1.3 Software interfaces
3.1.1.1.4 Communications interfaces

3.1.1.2 Functional requirements
3.1.1.2.1 Functional requirement 1
.
.
.

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

22 Copyright © 1998 IEEE. All rights reserved.

3.1.1.2.n Functional requirement n
3.1.1.3 Performance

3.1.2 Mode 2
.
.
.
3.1.m Mode m

3.2 Design constraints
3.3 Software system attributes
3.4 Other requirements

A.3 Template of SRS Section 3 organized by user class

3. SpeciÞc requirements
3.1 External interface requirements

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces

3.2 Functional requirements
3.2.1 User class 1

3.2.1.1 Functional requirement 1.1
.
.
.
3.2.1.n Functional requirement 1.n

3.2.2 User class 2
.
.
.
3.2.m User class m

3.2.m.1 Functional requirement m.1
.
.
.
3.2.m.n Functional requirement m.n

3.3 Performance requirements
3.4 Design constraints
3.5 Software system attributes
3.6 Other requirements

A.4 Template of SRS Section 3 organized by object

3. SpeciÞc requirements
3.1 External interface requirements

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces

3.2 Classes/Objects
3.2.1 Class/Object 1

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved. 23

3.2.1.1 Attributes (direct or inherited)
3.2.1.1.1 Attribute 1
.
.
.
3.2.1.1.n Attribute n

3.2.1.2 Functions (services, methods, direct or inherited)
3.2.1.2.1 Functional requirement 1.1
.
.
.
3.2.1.2.m Functional requirement 1.m

3.2.1.3 Messages (communications received or sent)
3.2.2 Class/Object 2
.
.
.
3.2.p Class/Object p

3.3 Performance requirements
3.4 Design constraints
3.5 Software system attributes
3.6 Other requirements

A.5 Template of SRS Section 3 organized by feature

3. SpeciÞc requirements
3.1 External interface requirements

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces

3.2 System features
3.2.1 System Feature 1

3.2.1.1 Introduction/Purpose of feature
3.2.1.2 Stimulus/Response sequence
3.2.1.3 Associated functional requirements

3.2.1.3.1 Functional requirement 1
.
.
.
3.2.1.3.n Functional requirement n

3.2.2 System feature 2
.
.
.
3.2.m System feature m
.
.
.

3.3 Performance requirements
3.4 Design constraints
3.5 Software system attributes
3.6 Other requirements

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

24 Copyright © 1998 IEEE. All rights reserved.

A.6 Template of SRS Section 3 organized by stimulus

3. SpeciÞc requirements
3.1 External interface requirements

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces

3.2 Functional requirements
3.2.1 Stimulus 1

3.2.1.1 Functional requirement 1.1
.
.
.
3.2.1.n Functional requirement 1.n

3.2.2 Stimulus 2
.
.
.
3.2.m Stimulus m

3.2.m.1 Functional requirement m.1
.
.
.
3.2.m.n Functional requirement m.n

3.3 Performance requirements
3.4 Design constraints
3.5 Software system attributes
3.6 Other requirements

A.7 Template of SRS Section 3 organized by functional hierarchy

3. SpeciÞc requirements
3.1 External interface requirements

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces

3.2 Functional requirements
3.2.1 Information ßows

3.2.1.1 Data ßow diagram 1
3.2.1.1.1 Data entities
3.2.1.1.2 Pertinent processes
3.2.1.1.3 Topology

3.2.1.2 Data ßow diagram 2
3.2.1.2.1 Data entities
3.2.1.2.2 Pertinent processes
3.2.1.2.3 Topology

.

.

.
3.2.1.n Data ßow diagram n

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved. 25

3.2.1.n.1 Data entities
3.2.1.n.2 Pertinent processes
3.2.1.n.3 Topology

3.2.2 Process descriptions
3.2.2.1 Process 1

3.2.2.1.1 Input data entities
3.2.2.1.2 Algorithm or formula of process
3.2.2.1.3 Affected data entities

3.2.2.2 Process 2
3.2.2.2.1 Input data entities
3.2.2.2.2 Algorithm or formula of process
3.2.2.2.3 Affected data entities

.

.

.
3.2.2.m Process m

3.2.2.m.1 Input data entities
3.2.2.m.2 Algorithm or formula of process
3.2.2.m.3 Affected data entities

3.2.3 Data construct speciÞcations
3.2.3.1 Construct 1

3.2.3.1.1 Record type
3.2.3.1.2 Constituent Þelds

3.2.3.2 Construct 2
3.2.3.2.1 Record type
3.2.3.2.2 Constituent Þelds

.

.

.
3.2.3.p Construct p

3.2.3.p.1 Record type
3.2.3.p.2 Constituent Þelds

3.2.4 Data dictionary
3.2.4.1 Data element 1

3.2.4.1.1 Name
3.2.4.1.2 Representation
3.2.4.1.3 Units/Format
3.2.4.1.4 Precision/Accuracy
3.2.4.1.5 Range

3.2.4.2 Data element 2
3.2.4.2.1 Name
3.2.4.2.2 Representation
3.2.4.2.3 Units/Format
3.2.4.2.4 Precision/Accuracy
3.2.4.2.5 Range

.

.

.
3.2.4.q Data element q

3.2.4.q.1 Name
3.2.4.q.2 Representation
3.2.4.q.3 Units/Format
3.2.4.q.4 Precision/Accuracy
3.2.4.q.5 Range

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

26 Copyright © 1998 IEEE. All rights reserved.

3.3 Performance requirements
3.4 Design constraints
3.5 Software system attributes
3.6 Other requirements

A.8 Template of SRS Section 3 showing multiple organizations

3. SpeciÞc requirements
3.1 External interface requirements

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces

3.2 Functional requirements
3.2.1 User class 1

3.2.1.1 Feature 1.1
3.2.1.1.1 Introduction/Purpose of feature
3.2.1.1.2 Stimulus/Response sequence
3.2.1.1.3 Associated functional requirements

3.2.1.2 Feature 1.2
3.2.1.2.1 Introduction/Purpose of feature
3.2.1.2.2 Stimulus/Response sequence
3.2.1.2.3 Associated functional requirements

.

.

.
3.2.1.m Feature 1.m

3.2.1.m.1 Introduction/Purpose of feature
3.2.1.m.2 Stimulus/Response sequence
3.2.1.m.3 Associated functional requirements

3.2.2 User class 2
.
.
.
3.2.n User class n
.
.
.

3.3 Performance requirements
3.4 Design constraints
3.5 Software system attributes
3.6 Other requirements

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved. 27

Annex B

(informative)

Guidelines for compliance with IEEE/EIA 12207.1-1997

B.1 Overview

The Software Engineering Standards Committee (SESC) of the IEEE Computer Society has endorsed the
policy of adopting international standards. In 1995, the international standard, ISO/IEC 12207, Information
technologyÑSoftware life cycle processes, was completed. The standard establishes a common framework
for software life cycle processes, with well-deÞned terminology, that can be referenced by the software
industry.

In 1995 the SESC evaluated ISO/IEC 12207 and decided that the standard should be adopted and serve as
the basis for life cycle processes within the IEEE Software Engineering Collection. The IEEE adaptation of
ISO/IEC 12207 is IEEE/EIA 12207.0-1996. It contains ISO/IEC 12207 and the following additions:
improved compliance approach, life cycle process objectives, life cycle data objectives, and errata.

The implementation of ISO/IEC 12207 within the IEEE also includes the following:

Ñ IEEE/EIA 12207.1-1997, IEEE/EIA Guide for Information TechnologyÑSoftware life cycle pro-
cessesÑLife cycle data;

Ñ IEEE/EIA 12207.2-1997, IEEE/EIA Guide for Information TechnologyÑSoftware life cycle pro-
cessesÑImplementation considerations; and

Ñ Additions to 11 SESC standards (i.e., IEEE Stds 730, 828, 829, 830, 1012, 1016, 1058, 1062, 1219,
1233, 1362) to deÞne the correlation between the data produced by existing SESC standards and the
data produced by the application of IEEE/EIA 12207.1-1997.

NOTEÑAlthough IEEE/EIA 12207.1-1997 is a guide, it also contains provisions for application as a standard with spe-
ciÞc compliance requirements. This annex treats 12207.1-1997 as a standard.

B.1.1 Scope and purpose

Both IEEE Std 830-1998 and IEEE/EIA 12207.1-1997 place requirements on a Software Requirements
Description Document. The purpose of this annex is to explain the relationship between the two sets of
requirements so that users producing documents intended to comply with both standards may do so.

B.2 Correlation

This clause explains the relationship between IEEE Std 830-1998 and IEEE/EIA 12207.0-1996 and IEEE/
EIA 12207.1-1997 in the following areas: terminology, process, and life cycle data.

B.2.1 Terminology correlation

Both this recommended practice and IEEE/EIA 12207.0-1996 have similar semantics for the key terms of
software, requirements, speciÞcation, supplier, developer, and maintainer. This recommended practice uses

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

28 Copyright © 1998 IEEE. All rights reserved.

the term ÒcustomerÓ where IEEE/EIA 12207.0-1996 uses Òacquirer,Ó and this recommended practice uses
ÒuserÓ where IEEE/EIA 12207.0-1996 uses Òoperator.Ó

B.2.2 Process correlation

IEEE/EIA 12207.0-1996 uses a process-oriented approach for describing the deÞnition of a set of require-
ments for software. This recommended practice uses a product-oriented approach, where the product is a
Software Requirements Description (SRD). There are natural process steps, namely the steps to create each
portion of the SRD. These may be correlated with the process requirements of IEEE/EIA 12207.0-1996. The
difference is that this recommended practice is focused on the development of software requirements
whereas IEEE/EIA 12207.0-1996 provides an overall life cycle view and mentions Software Requirements
Analysis as part of its Development Process. This recommended practice provides a greater level of detail on
what is involved in the preparation of an SRD.

B.2.3 Life cycle data correlation

IEEE/EIA 12207.0-1996 takes the viewpoint that the software requirements are derived from the system
requirements. Therefore, it uses the term, ÒdescriptionÓ rather that ÒspeciÞcationÓ to describe the software
requirements. In a system in which software is a component, each requiring its own speciÞcation, there
would be a System Requirements SpeciÞcation (SRS) and one or more SRDs. If the term Software Require-
ments SpeciÞcation had been used, there would be a confusion between an SRS referring to the system or
software requirements. In the case where there is a stand-alone software system, IEEE/EIA 12207.1-1997
states ÒIf the software is a stand-alone system, then this document should be a speciÞcation.Ó

B.3 Content mapping

This clause provides details bearing on a claim that an SRS complying with this recommended practice
would also achieve Òdocument complianceÓ with the SRD described in IEEE/EIA 12207.1-1997. The
requirements for document compliance are summarized in a single row of Table 1 of IEEE/EIA 12207.1-
1997. That row is reproduced in Table B.1 of this recommended practice.

The requirements for document compliance are discussed in the following subclauses:

Ñ B.3.1 discusses compliance with the information requirements noted in column 2 of Table B.1 as
prescribed by 5.1.1.4, 5.3.4.1, and 5.3.4.2 of IEEE/EIA 12207.0-1996.

Table B.1ÑSummary of requirements for an SRD
excerpted from Table 1 of IEEE/EIA 12207.1-1997

Information
item

IEEE/EIA
12207.0-1996

Clause
Kind

IEEE/EIA
12207.1-1997

Clause
References

Software
Requirements
Description

5.1.1.4, 5.3.4.1,
5.3.4.2

Description
(See note for 6.22.1
of IEEE/EIA
12207.1-1997.)

6.22 IEEE Std 830-1998; EIA/IEEE
J-STD-016, F.2.3, F.2.4; MIL-
STD 961D. Also see ISO/IEC
5806, 5807, 6593, 8631, 8790,
and 11411 for guidance on use
of notations.

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved. 29

Ñ B.3.2 discusses compliance with the generic content guideline (the ÒkindÓ of document) noted in
column 3 of Table B.1 as a ÒdescriptionÓ. The generic content guidelines for a ÒdescriptionÓ appear
in 5.1 of IEEE/EIA 12207.1-1997.

Ñ B.3.3 discusses compliance with the speciÞc requirements for a Software Requirements Description
noted in column 4 of Table B.1 as prescribed by 6.22 of IEEE/EIA 12207.1-1997.

Ñ B.3.4 discusses compliance with the life cycle data objectives of Annex H of IEEE/EIA 12207.0-
1996 as described in 4.2 of IEEE/EIA 12207.1-1997.

B.3.1 Compliance with information requirements of IEEE/EIA 12207.0-1996

The information requirements for an SRD are those prescribed by 5.1.1.4, 5.3.4.1, and 5.3.4.2 of IEEE/EIA
12207.0-1996. The requirements are substantively identical to those considered in B.3.3 of this recom-
mended practice.

B.3.2 Compliance with generic content guidelines of IEEE/EIA 12207.1-1997

According to IEEE/EIA 12207.1-1997, the generic content guideline for an SRD is generally a description,
as prescribed by 5.1 of IEEE/EIA 12207.1-1997. A complying description shall achieve the purpose stated in
5.1.1 and include the information listed in 5.1.2 of IEEE/EIA 12207.1-1997.

The purpose of a description is:

IEEE/EIA 12207.1-1997, subclause 5.1.1: Purpose: Describe a planned or actual function,
design, performance, or process.

An SRD complying with this recommended practice would achieve the stated purpose.

Any description or speciÞcation complying with IEEE/EIA 12207.1-1997 shall satisfy the generic content
requirements provided in 5.1.2 of that standard. Table B.2 of this recommended practice lists the generic
content items and, where appropriate, references the clause of this recommended practice that requires the
same information.

Table B.2ÑCoverage of generic description requirements by IEEE Std 830-1998

IEEE/EIA 12207.1-1997
generic content

Corresponding clauses of
IEEE Std 830-1998

Additions to requirements of
IEEE Std 830-1998

a) Date of issue and status Ñ Date of issue and status shall be provided.

b) Scope 5.1.1 Scope Ñ

c) Issuing organization Ñ Issuing organization shall be identiÞed.

d) References 5.1.4 References Ñ

e) Context 5.1.2 Scope Ñ

f) Notation for description 4.3 Characteristics of a good SRS Ñ

g) Body 5. The parts of an SRS Ñ

h) Summary 5.1.1. Overview Ñ

i) Glossary 5.1.3 DeÞnitions Ñ

j) Change history Ñ Change history for the SRD shall be
provided or referenced.

IEEE
Std 830-1998 IEEE RECOMMENDED PRACTICE FOR

30 Copyright © 1998 IEEE. All rights reserved.

B.3.3 Compliance with speciÞc content requirements of IEEE/EIA 12207.1-1997

The speciÞc content requirements for an SRD in IEEE/EIA 12207.1-1997 are prescribed by 6.22 of IEEE/
EIA 12207.1-1997. A compliant SRD shall achieve the purpose stated in 6.22.1 of IEEE/EIA 12207.1-1997.

The purpose of the SRD is:

IEEE/EIA 12207.1-1997, subclause 6.22.1: Purpose: Specify the requirements for a soft-
ware item and the methods to be used to ensure that each requirement has been met. Used as
the basis for design and qualiÞcation testing of a software item.

An SRS complying with this recommended practice and meeting the additional requirements of Table B.3 of
this recommended practice would achieve the stated purpose.

An SRD compliant with IEEE/EIA 12207.1-1997 shall satisfy the speciÞc content requirements provided in
6.22.3 and 6.22.4 of that standard. Table B.3 of this recommended practice lists the speciÞc content items
and, where appropriate, references the clause of this recommended practice that requires the same informa-
tion.

An SRD speciÞed according the requirements stated or referenced in Table B.3 of this recommended prac-
tice shall be evaluated considering the criteria provided in 5.3.4.2 of IEEE/EIA 12207.0-1996.

Table B.3ÑCoverage of speciÞc SRD requirements by IEEE Std 830-1998

IEEE/EIA 12207.1-1997
speciÞc content

Corresponding clauses of
IEEE Std 830-1998

Additions to requirements of
IEEE Std 830-1998

a) Generic description information See Table B.2 Ñ

b) System identiÞcation and
overview

5.1.1 Scope Ñ

c) Functionality of the software item
including:
 Ð Performance requirements
 Ð Physical characteristics
 Ð Environmental conditions

5.3.2 Functions
5.3.3 Performance requirements

Physical characteristics and environ-
mental conditions should be
provided.

 d) Requirements for interfaces
external to software item

5.3.1 External interfaces Ñ

e) QualiÞcation requirements Ñ The requirements to be used for
qualiÞcation testing should be
provided (or referenced).

f) Safety speciÞcations 5.2.4 Constraints Ñ

g) Security and privacy
speciÞcations

5.3.6.3 Security Ñ

h) Human-factors engineering
requirements

5.2.3 User characteristics
5.2.1.2 User interfaces

Ñ

i) Data deÞnition and database
requirements

5.3.4 Logical data base requirements Ñ

j) Installation and acceptance
requirements at operation site

5.2.1.8 Site adaptation requirements Installation and acceptance require-
ments at operation site

k) Installation and acceptance
requirements at maintenance site

Ñ Installation and acceptance require-
ments at maintenance site

l) User documentation requirements Ñ User documentation requirements

m) User operation and execution
requirements

5.2.1.7 Operations User execution requirements

IEEE
SOFTWARE REQUIREMENTS SPECIFICATIONS Std 830-1998

Copyright © 1998 IEEE. All rights reserved. 31

B.3.4 Compliance with life cycle data objectives

In addition to the content requirements, life cycle data shall be managed in accordance with the objectives
provided in Annex H of IEEE/EIA 12207.0-1996.

B.4 Conclusion

The analysis suggests that any SRS complying with this recommended practice and the additions shown in
Table B.2 and Table B.3 also complies with the requirements of an SRD in IEEE/EIA 12207.1-1997. In
addition, to comply with IEEE/EIA 12207.1-1997, an SRS shall support the life cycle data objectives of
Annex H of IEEE/EIA 12207.0-1996.

n) User maintenance requirements 5.3.6.4 Maintainability Ñ

o) Software quality characteristics 5.3.6 Software system attributes Ñ

p) Design and implementation
constraints

5.2.4 Constraints Ñ

q) Computer resource requirements 5.3.3 Performance requirements Computer resource requirements

r) Packaging requirements Ñ Packaging requirements

s) Precedence and criticality of
requirements

5.2.6 Apportioning of requirements Ñ

t) Requirements traceability 4.3.8 Traceable Ñ

u) Rationale 5.2.5 Assumptions and
dependencies

Ñ

Items a) through f) below are from
6.22.4

a) Support the life cycle data objec-
tives of Annex H of IEEE/EIA
12207.0-1996

Ñ

Support the life cycle data objectives
of Annex H of IEEE/EIA 12207.0-
1996

b) Describe any function using well-
deÞned notation

4.3 Characteristics of a good SRS Ñ

c) DeÞne no requirements that are in
conßict

4.3 Characteristics of a good SRS Ñ

d) User standard terminology and
deÞnitions

5.1.3 DeÞnition Ñ

e) DeÞne each unique requirement
one to prevent inconsistency

4.3 Characteristics of a good SRS Ñ

f) Uniquely identify each require-
ment

4.3 Characteristics of a good SRS Ñ

Table B.3ÑCoverage of speciÞc SRD requirements by IEEE Std 830-1998 (continued)

IEEE/EIA 12207.1-1997
speciÞc content

Corresponding clauses of
IEEE Std 830-1998

Additions to requirements of
IEEE Std 830-1998

