
Python - Tkinter

1

Python Tkinter
Python Tkinter is used to create interfaces.

Then you develop a user interface (UI) there is a standard set of tasks
you must accomplish:

1. You must specify how you want the UI to look. That is, you must
write code that determines what the user will see on the
computer screen.

2. You must decide what the UI will do. That is, you must write
routines that accomplish the tasks of the program.

3. You must associate the “looking” with the “doing”. That is, you must write code that
associates things that the user sees on the screen with the routines that you have
written to perform the program’s tasks.

4. Finally, you must write code that sits and waits for input from the user. Any UI
should jump around and act silly.

GUI (pronounced “gooey”) is an acronym for Graphical User Interface and it

has some special jargon that is only used when dealing with them.

 We specify how we want a GUI to look by describing the widgets we

want to display, and their special relationships (i.e. whether one

widget is above or below, or to the right or left of other widgets). The

word widget is a nonsense word that has become the common term

for GUI components. Widgets include things such as windows,

buttons, menus icons, drop-down lists, scroll bars and so on.

 The routines that actually do the work of the GUI are called event

handlers. Events are read as “input by the user”, such as mouse

clicks, or a press of a key on the keyboard. These routines are called

handlers because they handle (that is, respond to) such events.

 Associating an event handler with a widget is called binding. Roughly, the process of binding

involved associating three different things:

1. A type of event (e.g. click of the left mouse button, or by pressing

ENTER on the keyboard),

2. A widget (e.g. button),

3. An event handler routine

For example, we might bind a single click of the left mouse button on the CLOSE button on

the screen to run the “closeProgram” routine, which closes the window and shuts down the

program.

 The code that sits and waits for input is called the event loop.

Widget - a cartoon character
from the early 90's. Tkinter’s
widgets don’t look like this
character!

Python - Tkinter

2

About the Event Loop

If you believe the movies, every small town has a little old lady who spends
all of her time at her front window, just WATCHING. She sees everything
that goes on in the neighbourhood. A lot of what she sees is uninteresting
of course -- just people going to and fro in the street. But some of it is
interesting -- like a big fight between the newly-wed couple in the house
across the street. When interesting events happen, the watchdog lady
immediately is on the phone with the news to the police or to her
neighbours.

The event loop is a lot like this watchdog lady. The event loop spends all of its time watching events
go by, and it sees all of them. Most of the events are uninteresting, and when it sees them, it does
nothing. But when it sees something interesting -- an event that it knows is interesting, because an
event handler has been bound to the event -- then it immediately calls up the event handler and lets
it know that the event has happened.

The simplest Tkinter program ever!

All you need to type is: (save as tk_simple.py)

from tkinter import *
root = Tk()
root.mainloop()

1. The first line imports Tkinter (be careful with capital and lowercase letters in the module

name!!)

2. The second line creates a top level window. Technically, this statement is creating a copy (an

instance) of the class “tkinter.Tk”.

The top level window is the highest-leve GUI component in any Tkinter application. by

conventions, the top level window is always named root.

3. The third line executes the mainloop (aka the event loop) method of the root object. As the

mainloop runs, it waits for events to happen in root. If an event occurs, then it is handled

and the loop continues running, waiting for the next event. The loop executes until a destroy

event happens to the root window. A destroy event is one that closes the window. When the

root is destroyed, the window is closed and the event loop is exited. The main loop is always

on the bottom of your script.

When you run the program, you will see that (thanks to the people who make Tk) the top level

window automatically comes with widgets: minimise, maximise and close. They will work like any

other program’s window.

By clicking the close widget, this forces the event loop to search through the program

and find the destroy event. When it finds it, it terminates the window.

Python - Tkinter

3

Container

Widget

Specifying how the GUI should look

From now on, we will use two terms, container and widget. Widgets are

components that (usually) are visible and do things. A container is the place

where we put widgets.

Tkinter provides a number of containers:

 Canvas is a container for drawing applications

 Frame is a more frequently used window

Frames are created by calling the Frame module: e.g., Frame()

Within the parenthesis it is required that you name a parameter. The new parameter acts as a

placeholder for the newly created frame. The frame parameter is always named the same as the top

level window, root.

To create a frame you have to make an instance of the Frame module:

container1 = Frame(root)

When creating an instance of a class (whether it’s a frame or a widget) always store it in a variable.

In short, it creates a container into which we can put widgets.

container1.pack()

Packing is a process of setting up the visual elements in your GUI. You must always pack containers

and widgets, or they will not be seen when you run your GUI.

When you run this program, it will look very much like the previous one, except that there will be

less to see. That is because…

Frames are elastic

A frame is literally a frame, like around a photo. The space within the frame is called

the cavity. The cavity is stretchy like a rubber band. Unless you specify a window

size for the frame, the cavity will stretch or shrink to accommodate whatever is

placed within it.

Python - Tkinter

4

Button Widget

To create a button:

button1 = Button(container1)

This creates a new button, and associates it with the container we want it to be placed in.

Button Attributes

Widgets have lots of attributes that control their size, text and background colours, the text they

display, how their borders look, and so on.

button1[“text”] = “Hello, world!”

button1[“background”] = “green”

button1.pack() #always, always, always pack the objects!

Now container1 has stretched to accommodate button1.

Your code should look like this:

from tkinter import *

root = Tk()

container1 = Frame(root)
container1.pack()

button1 = Button(container1)
button1["text"] = "Hello, world!"
button1["background"] = "green"
button1.pack()

root.mainloop()

Python - Tkinter

5

Button reactions

Just say you want a dialog box to pop up when the user presses the button.

from tkinter import *

root = Tk()

def message():
 messagebox.showinfo('Hi!', 'You clicked the button!')

container1 = Frame(root)
container1.pack()

button1 = Button(container1, command = message)
button1["text"] = "Hello, world!"
button1["background"] = "green"
button1.pack()

root.mainloop()

Create a function that displays the message. The function calls the messagebox module in Tk and

reads the showinfo() function within the module. Inside the parenthesis, the first string is the name

of the dialog box, and the second string is the message you want to appear inside the box.

In the button1 variable, you have to tell Python to call the function you have just created. You do

this by typing: command = NameOfFunction.

Other dialog boxes

There are a range of dialog boxes you can use, you should try them all out!

showinfo,

showwarning

showerror

askquestion

askokcancel

askyesno

askyesnocancel

Python - Tkinter

6

Collapsing events

Most of the time events can take up many lines of code. It is possible to collapse some of these lines

into a single line of code.

For example - instead of writing:

button1 = Button(container1, command = message)
button1["text"] = "Hello, world!"
button1["background"] = "green"
button1.pack()

It can be written:

button1 = Button(container1, text= ‘New’, bg = ‘green’, width=6, command=message).pack()

By specifying the width or height of the button you can change the way the buttons look.

In the .pack() function you can include whether you want the button to sit on the left, right, top or

bottom, and the padding surrounding the button. It is typed like this:

.pack(side=LEFT, padx=2, pady=2)

Naming the Window

Usually the window is named tk.

You can change it by typing:

root = Tk()
root.title(‘New Window Title’)

Adding text into your window

To add text into your window, type:

Label(root, text=’This is some text.’).pack(pady=10)

Python - Tkinter

7

Changing the size of your window

To change the size of the main window, type:

root.geometry(“200x200”)

You can type any pixel ratio in the parenthesis. The first number is x-axis (width), the second is the y-

axis (height).

Making a toolbar

To make a toolbar you must have several buttons, but for this we will

have two buttons, New and Open.

First we have to create a new container for the toolbar to sit in.

def buttons():
 print('pressed the button!')

toolbar = Frame(root)

new_btn = Button(toolbar, text=’New’, width=6, command=buttons).pack(side=LEFT,
padx=2, pady=2)

open_btn = Button(toolbar, text=’Open’, width=6, command=buttons).pack(side=LEFT,
padx=2, pady=2)

toolbar.pack(side=TOP, fill=X)

The fill=x means that if you expand the window, the button will grow to fill the window only along
the x-axis. You can change it to Y if you want the buttons to expand along the y-axis.

Python - Tkinter

8

Making a menu

menu = Menu(root)
root.config(menu=menu)

filemenu = Menu(menu)
menu.add_cascade(label="File", menu=filemenu)

filemenu.add_command(label='New', command=buttons)
filemenu.add_command(label='Open...', command=buttons)
filemenu.add_separator()
filemenu.add_command(label='Exit', command=buttons)

helpmenu = Menu(menu)
menu.add_cascade(label='Help', menu=helpmenu)
helpmenu.add_command(label="About...", command=buttons)

An independent window

To set up an independent window all you have to do is set up a
new variable to store it. Up until now we have been using root as
the main window, all we have to do is create a new one.

window1 = Tk()

Button(window1, text=’Button 1’, command=window1.destory).pack()

The command called is an built in destroy function.

When dealing with lots of independent windows, you should create modules to store each window,
so that the main code doesn’t get too long.

Python - Tkinter

9

Changing the cursor

from tkinter import *
widget = Button(text='Button', padx=10, pady=10)
widget.pack(padx=20, pady=20)
widget.config(cursor='gumby')

widget.config(font=('helvetica', 20, 'underline italic'))
mainloop()

Python Tkinter supports quite a number of different mouse cursors available. The exact graphic may
vary according to your operating system.

Here is the list of interesting ones:

 "arrow"
 "circle"
 "clock"
 "cross"
 "dotbox"
 "exchange"
 "fleur"
 "heart"
 "heart"
 "man"
 "mouse"
 "pirate"
 "plus"
 "shuttle"
 "sizing"
 "spider"
 "spraycan"
 "star"
 "target"
 "tcross"
 "trek"
 "watch"

Custom Window Icon

Create a custom Icon, make sure it is 24x24px. Save as an .ico and it in the same folder as your
scripts.

root = Tk()
root.title(‘New Window Title’)
root.iconbitmap(‘iconName.ico’)

Python - Tkinter

10

Using a canvas

Lately we have only been using a Frame, now we will create a new script file and use a canvas.

Make sure you import tkinter:

from tkinter import *

Instead of naming this window root, we will call it draw, so when we call the canvas as a module in
the root script we will know which one we are working with.

draw = Tk()
draw.title(‘Drawing area’)
draw.geometry(“500x500”)

code goes here

draw.mainloop()

Remember that we have to pack the whole canvas at the end of the script.

A canvas works similar to a frame, but on a canvas you can have custom images on your menu
buttons!!! (on a frame, you can’t)

Configuring Widget Appearance

from tkinter import *
root = Tk()
labelfont = (‘times’, 20, ‘bold’) #font family, size, style
widget = label(root, text=’Hello config world!’)
widget.config(bg=’black’, fg=’yellow’) # yellow text on black background
widget.config(font=labelfont) # use larger font
widget.config(height=3, width=20) # initial size: lines, characters
widget.pack(expand=YES, fill=BOTH)
root.mainloop()

.config changes the appearance of widgets.

Python - Tkinter

11

Information to remember when configuring widgets

Colour – bg = ‘color’ #background
 fg = ‘color’ #foreground’

Size - Can be specified for any widget. Usually measured in lines high, characters wide.

Font - font – i.e font family – any generic font, stay away from fancy ones

size – in pixels
style – normal, bold, roman, italic, underline, overstrike, or combinations e.g, bold italic

Layout and Expansion – expand – allows widgets (i.e window to expand)
 fill – makes widgets fill the window

Border and Relief – bd = n - n is the width of the border in pixels
 relief – can be FLAT, SUNKEN, RAISED, GROVE, SOLID, or RIDGE

Cursor - cursor - see page 9.

State - state = DISABLED (deactivates widgets), NORMAL, READONLY(unresponsive)

Padding - padx = pixel width. Space on the left and right of the widget.
 Pady = pixel width. Space on the top and bottom of the widget.

Custom images

Here are some rules to go with custom button images:

 They shouldn’t be too big, icons are usually 24x24px, or 32x32px. For this example my
images are 50x50px.

 All images have to be saved as .gifs – else they won’t work. Other image formats save too
much information in with the image’s code.

 Save the images as btn_Name.gif, (the Name can be anything you want - keep it sensible).
The reason for this is so you can find it in your files, and know what it is for.

 Save the images in the same folder as your GUI scripts. If you don’t they won’t be found.

Python - Tkinter

12

Using custom images

The first thing you have to do is create variables to store the
images:

img0 = PhotoImage(file='btn_home.gif')
img1 = PhotoImage(file='btn_one.gif')
img2 = PhotoImage(file='btn_two.gif')
img3 = PhotoImage(file='btn_three.gif')
img4 = PhotoImage(file='btn_four.gif')

Then set up a toolbar to place the buttons:

toolbar = Canvas(draw)

Create functions for each button:

def btnHome():
 messagebox.askyesno('Going home!', 'Are you going home?')
def btnOne():
 messagebox.showwarning('One!', 'You pressed One')
def btnTwo():
 messagebox.askquestion('Two!', 'Does Flow rhyme with No?')
def btnThree():
 messagebox.showerror('Three!', 'That\'s not right!')
def btnFour():
 messagebox.showinfo('Four!', 'Four is the fourth number when you start counting from one!')

Create the buttons:

home = Button(toolbar, command = btnHome, image = img0).pack(side=LEFT, padx=2, pady=2)
one = Button(toolbar, command = btnOne, image = img1).pack(side=LEFT, padx=2, pady=2)
two = Button(toolbar, command = btnTwo, image = img2).pack(side=LEFT, padx=2, pady=2)
three = Button(toolbar, command = btnThree, image = img3).pack(side=LEFT, padx=2, pady=2)
four = Button(toolbar, command = btnFour, image = img4).pack(side=LEFT, padx=2, pady=2)

Pack the toolbar:

toolbar.pack(side=TOP, fill=X)

And you’re done!

FYI: if you don’t put the side = LEFT in each button, the buttons will sit beneath each other (y-axis).

Let’s get all technical, and side track a little….

These are my buttons. btn_home.gif, btn_one.gif,
btn_two.gif, btn_three.gif, and btn_four.gif

Python - Tkinter

13

Object Oriented Programming (OOP)

An object is a script that contains data and methods. It looks like a module, but it behaves
differently. When using objects, computers can run programs much faster than reading a single
script.

An object has built in attributes that help to describe it to other scripts. For example, if students was
the object, you would have attributes to describe it.

students.smart

Objects also have methods, they are exactly like functions, but you call it a method when it is inside
an object. A method uses the data from the object it is coded in and it describes things that the
object can do, for example:

students.learning

Before you do all of this, you have to build a class, which is a blueprint for your object.

In IDLE Type :

>>>class students:

This tells Python that you will be building a class called students.

In your class you will have a lot of different types of data; variables and methods etc. Classes are like
a cookie cutter, every time you use it, it will create a cookie for you.

Type:

>>>uniform = ‘green’
>>>hair = ‘short’
>>>shirts = ‘white’
>>>ties =True

 These variables describe what the class does and specify how they will be used within the class
(depending on their data type (string, Boolean, integer etc)).

Make sure the variables are indented in one place.

Python - Tkinter

14

Methods

To make a method is exactly the same as making a function.

>>>def learning()

The only thing you have to do is add parameters in the parenthesis, this helps the class behave
correctly.

The first parameter you must use is self. A description about self is in the More Methods section,
below.

>>>def learning(self):

Now you can add code into your method. Make sure that the code is indented.

>>>def learning(self):
 >>>return (‘This is the learning method’)

Press Enter twice. This creates the
class.

If you type students into IDLE you will get a strange message,
this means that the class has been created.

Python - Tkinter

15

Objects

You need to make objects to get the data from your class. An object is like a variable that stores the
class.

studentObject = students()

Have empty parameters.

The studentObject now refers to the class students.

Now you can call the variables and methods inside the class:

studentObject.shirts

 call variables with a full stop [.].

Python - Tkinter

16

More methods

In IDLE create a new class:

Self is a temporary placeholder for the
object, which means that if you have an
object name apples, then whenever you
call the object it will change self to apples.
You can name the first parameter (self) anything you want, but self is the standard word that all
programmers use when creating classes. Every method you create in a class must have the self
parameter first.

You can create lots of objects from the methods in the class,
I created two, first and second.

To call the methods in your class, you have to type the object name, a full stop[.], then the method
you want to call.

The createName method has two parameters, self and name.

The self parameter stores the name of the object, in this case first.

 The name parameter will store the name you type inside the parenthesis (e.g. ‘Nigel’)

Call the second object with another name.

Python - Tkinter

17

This will use the class to store two completely different names in the same name parameter.

To display the name, type:

This reads the function called displayName and changes
the self parameter to the name stored in the first
object.

Use the saying method to print the name.

Python - Tkinter

18

Back to tkinter

Open up the canvas script you created on page 10, and create a class. Make sure you indent
everything. Save your file as tk_canvas.py.

Now this class can be called from within a new module. Name
this new one tk_windows.py.

Save and run it!!

These functions don’t need the self

in the parenthesis, due to being

used for GUI display. If they were

used to store variables, self would

be used.

Python - Tkinter

19

The different importing styles

You have probably found that there are two ways to import modules into python:

import moduleName

from moduleName import *

The first way is to import your custom modules. By importing modules this way you have to specify
the moduleName then the function in your code, example: moduleName.functionname()

The second way is to import python’s built in modules. Using this way you don’t have to specify the
moduleName throughout the script, like the above example.

_ _init_ _

__init__ (double under score on both sides) is a special method name used when defining your own
classes. init is an abbreviation for initialisation.

__init__ makes coding classes a little more professional looking. But on the technical side, __init__
is a way to specify default values when you declare an object; the values are set in the class method.

For instance if I have a Point class... that has two objects
which are the x and y coordinates i can do this:

Instead you can do this:

now you can make a point like this:

There are many of those special methods or function names, all with prefix __ (double-under).

__main__ is used so the Python interpreter denotes the start of actual code, not including function
and class definitions.

Python - Tkinter

20

Parent Classes and Child Classes (aka, superclass and subclass)

Superclasses and sub classes are one way to get one class to inherit all traits of another class. This
has to do with something called parenting.

Parenting is exactly as it sounds: parents have children, those children grow up and become parents,
then have children of their own, and on into infinity.

When you are dealing with parenting in programs, it is the same thing. Take a folder structure for
example:

Computer is the parent of Local Disk (C:)

Local Disk (C:) is the child of Computer, but the parent of all the folders within
it.

The Intel folder is a parent of ExtremeGraphics, which is a parent of CUI, which
is a parent of Resource.

Looking at it the other way, Resource is the child of CUI, CUI is the child of
ExtremeGraphics and ExtremeGraphics is the child of the Intel folder…

Inheritance in programming is exactly as it is in science, the child inherits traits
from the parents…

 In IDLE:

Create a parentClass, give it two variables.

Create a childClass, now in the parenthesis you type the class
you want it to inherit.
Then type pass, this means that the class doesn’t do anything.

Create an object for the parent class, then get it to read the
var1.

Because you told the childClass to inherit the information from
the parentClass, you can set up a childObject and get it to print
var1 (or var2!).

Python - Tkinter

21

Counting clicks on a button

Getting buttons to do something

This is where we write event handler routines to do the actual work of the program. An event
handler is a method that handles events when they occur.

In tkinter, the way you create this is through the bind() method, example:

widget.bind(event_type_name, event_handler_name)

Before we begin, we need to point out a possible point of confusion. The word "button" can be used
to refer to two entirely different things: (1) a button widget -- a GUI component that is displayed on
the computer monitor -- and (2) a button on your mouse -- the kind of button that you press with
your finger. In order to avoid confusion, I will usually try to distinguish them by referring to "button
widget" or "mouse button" rather than simply to "button".

When we bind events onto widget buttons we use an “<eventName>” tag. It looks similar to HTML
code.

The type of binding we will use is a "<Button-1>" event that reads the click of the left mouse button.

Python - Tkinter

22

Type this code into a new script file. Save it as tk_bind.py

Python - Tkinter

23

Binding events

All key binding events are case sensitive. Use the bindings shown below, don’t capitalise bindings
like <KEY-A>, Python won’t understand them.

Mouse Bindings

<Button-1> catches the click of the left mouse button.
<Button-2> catches the click of the middle mouse button.
<Button-3> catches the click of the right mouse button.

<B1-Motion> catches the mouse movement while the left mouse button is held down.
<B2-Motion> catches the mouse movement while the middle mouse button is held down.
<B3-Motion> catches the mouse movement while the right mouse button is held down.

<B1- ButtonPress> fires when the left button is pressed down.
<B2- ButtonPress> fires when the middle button is pressed down.
<B3- ButtonPress> fires when the right button is pressed down.

<B1- ButtonRelease> fires when the left button is released.
<B2- ButtonRelease> fires when the middle button is released.
<B3- ButtonRelease> fires when the right button is released.

<B1-Enter> and <B1-Leave> intercept the mouse entry and exit in a window’s display area (useful for
automatically highlighting a widget)
<B2-Enter> and <B2-Leave>
<B3-Enter> and <B3-Leave>

Keyboard Bindings

<KeyPress> catches a single key of the keyboard.
<Escape>, <Backspace> and <tab> catch other special keys.
<Up>, <Down>, <Left>, <Right> catch arrow key presses.

<Return> catches the press of the ENTER key on the keyboard
<Key-1> - <Key-0> catches the number keys
<Key-a> - <Key-z> catches the alphabetical keys

Python - Tkinter

24

List box with scroll bar

from tkinter import *

s = Scrollbar()
l = Listbox()

s.pack(side=RIGHT, fill=Y)
l.pack(side=LEFT, fill=Y)

s.config(command=l.yview)
l.config(yscrollcommand=s.set)

for i in range(30):
 l.insert(END, str(i)*3)

mainloop()

