
I ♥ My
Smartphone

A Computing Science Course in

Mobile App Development

by Jeremy Scott

TUTOR NOTES

i

Acknowledgements

This resource was partially funded by a grant from Education Scotland. We are also grateful for

the help and support provided by the following contributors:

Bridge of Don Academy
Crieff High School
George Heriot’s School
Johnstone High School
Kelso High School
CompEdNet, Scottish Forum for Computing Science Teachers
Computing At School
Professor Hal Abelson, Massachusetts Institute of Technology
Professor David Wolber, University of San Francisco
Scottish Informatics and Computer Science Alliance (SICSA)
Edinburgh Napier University School of Computing
Glasgow University School of Computing Science
Heriot-Watt University School of Mathematical and Computer Sciences
University of Edinburgh School of Informatics
Robert Gordon University School of Computing
University of Dundee School of Computing
University of Stirling Department of Computing Science and Mathematics
University of the West of Scotland School of Computing
ScotlandIS
Apps for Good
Brightsolid Online Innovation
JP Morgan
Microsoft Research
Oracle
O2
Sword Ciboodle

The contribution of the following individuals who served on the RSE/BCS Project Advisory Group

is also gratefully acknowledged:

Professor Sally Brown (chair), Mr David Bethune, Mr Ian Birrell, Professor Alan Bundy, Mr Paddy

Burns, Dr Quintin Cutts, Ms Kate Farrell, Mr William Hardie, Mr Simon Humphreys, Professor

Greg Michaelson, Dr Bill Mitchell, Ms Polly Purvis, Ms Jane Richardson and Ms Caroline Stuart.

Some of the tutorials within this resource are based on existing material by Prof. David Wolber of

the University of San Francisco and the App Inventor EDU site, reproduced and adapted under

Creative Commons licence. The author thanks those concerned for permission to use and adapt

their materials.

BCS is a registered charity: No 292786

The Royal Society of Edinburgh. Scotland's National Academy. Scottish Charity No. SC000470

ii

iii

Contents

Overview .. 1

Introduction ... 1

Computational Thinking ... 2

Why Mobile App Development?.. 3

Using this resource ... 3

Curriculum for Excellence outcomes ... 4

App Inventor ... 5

Known Issues .. 6

Using App Inventor in the classroom ... 6

Installation ... 7

Useful resources .. 8

Publishing on Google Play (formerly the Android Market) 8

Lessons and approach ... 9

Screencasts .. 9

Deep understanding .. 9

Pair programming .. 10

Suggested activities .. 10

Inter-disciplinary learning .. 10

Introduction to Mobile Devices ... 11

A Brief History of the Telephone .. 12

Mr Watson, come here – I want to see you! ... 12

Going mobile .. 12

When mobile phones became smart phones .. 13

Convergence: Bringing it all together .. 13

Telephone…or computer? ... 15

Smartphone software .. 16

Operating system ... 16

Apps ... 17

The mobile app industry .. 17

Further inter-disciplinary learning ... 18

Lesson 1: Virtual Pet .. 20

Lesson 2: Finger Painting ... 24

Variables ... 26

Lesson 3: MoleMasher game ... 30

Pair programming .. 31

iv

Lesson 4: Times Table Helper ... 34

Don’t crash and burn! .. 37

Lesson 5: Virtual Map Tour .. 39

Lesson 6: Heads I Win .. 41

Lesson 7: Wiff-Waff Game ... 44

Mobile App Project ... 48

Inter-disciplinary learning in the project ... 50

Congratulations! .. 50

Appendices ... 51

Appendix A: Learner Tracking Sheet .. 52

Appendix B: Sample Code .. 53

Appendix C: App Inventor Handout ... 61

Page 1

Overview

Introduction

Implementation of Curriculum for Excellence and the development of new National

Qualifications presented a timely opportunity to revise the way Computing Science is

taught in schools and to provide a more interesting, up-to-date and engaging experience

for both tutors and learners.

Although first to be published, this is intended as the third in a series of resources

developed by the Royal Society of Edinburgh and the BCS Academy of Computing that

exemplify a subset of the Computing Science-related outcomes of CfE at Levels 3 & 4

and beyond (specifically, in this case, National 4 Computing Science).

This resource will seek to consolidate Computing concepts introduced in the previous

resources through the medium of mobile app development. In addition to providing a

course in programming for mobile devices, it will explore new paradigms in Computing

such as mobile technologies and new interfaces, whilst providing ample opportunity for

inter-disciplinary linkage.

All three resources build on state-of-the-art understanding of the pedagogy of

Computing, drawn from around the world. This should enable learners to develop both

app development skills and deep understanding of core Computing concepts and the

ability to think like a computer scientist.

Whilst this resource is intended support tutors’ thinking about how they might translate

the intentions of the curriculum into classroom activity, it should not be seen as

prescriptive. Rather, it is intended to stimulate innovation and offer tutors the flexibility

and opportunity to deploy their creativity and skills in meeting the needs of learners.

Page 2

Computational Thinking

Computational thinking is recognised as a key skill set for all 21st century learners –

whether they intend to continue with Computing Science or not. It involves a set of

thinking practices through which to view the world:

 seeing a problem and its solution at many levels of detail (abstraction);

 thinking about tasks as a series of steps (algorithms);

 understanding that solving a large problem will involve breaking it down into a set of

smaller problems (decomposition);

 appreciating that a new problem is likely to be related to other problems the learner

has already solved (pattern recognition);

 realising that a solution to a problem may be used to solve a whole range of related

problems (generalisation).

Furthermore, there are some key understandings about computers:

 Computers are deterministic: they do what you tell them to do. This is news to

many, who think of them as pure magic.

 Computers are precise: they do exactly what you tell them to do.

 Computers can therefore be understood; they are just machines with logical

working.

Whilst computational thinking can be a component of many subjects, Computing

Science is particularly well-placed to deliver it.

Page 3

Why Mobile App Development?

For over twenty years, the desktop metaphor as exemplified by Mac OS and Windows

operating systems formed the basis of most users’ experience of Computing. The

resultant applications became the mainstay of the ICT curriculum and informed much of

what was taught.

Today’s learners have a different experience of Computing: it is on-line, social and

increasingly mobile. Computing devices have become more tactile and personal, the

result of convergence of numerous technologies from multi-touch to motion-sensing

and GPS.

This resource seeks to tap into these developments and provide an experience of

Computing Science which will engage with learners in a way that is more relevant to

their own digital lives.

Using this resource

As well as lessons, exercises and sample answers, this resource contains many suggested

supplementary activities and inter-disciplinary learning opportunities.

It is not the author’s intention that all the activities are attempted; rather, they are

simply suggestions as to the kind of activities that tutors may find useful.

Feel free to use this resource as you wish:

 as part of an introduction to Computing Science within Curriculum for

Excellence;

 to support the National 4 Software Design & Development unit or to form the

basis of work done in the Added Value unit;

 as an introduction to Software Design & Development in the National 5 course.

Above all, this resource should not be seen as prescriptive. It merely contains guidance

and suggestions as to the kinds of approach which can make learning more engaging,

whilst fostering computational thinking and greater understanding of Computing

Science concepts in learners.

Page 4

Curriculum for Excellence outcomes

This resource seeks to address the following outcomes within Curriculum for Excellence:

 Using appropriate software, I can work individually or collaboratively to design

and implement a game, animation or other application. TCH 3-09a

 I can build a digital solution which includes some aspects of multimedia to

communicate information to others. TCH 3-08b

 I can debate the possible future impact of new and emerging technologies on

economic prosperity and the environment. TCH 4-01c

 By learning the basic principles of a programming language or control

technology, I can design a solution to a scenario, implement it and evaluate its

success. TCH 4-09a

 I can integrate different media to create a digital solution which allows

interaction and collaboration with others. TCH 4-08c

 Through research, I can gain knowledge of computer systems or emerging

technologies to understand their differing features and consider their suitability

for the world of work. TCH 4-08d

 I can create graphics and animations using appropriate software which utilise

my skills and knowledge of the application. TCH 4-09b

Page 5

App Inventor

App Inventor (http://appinventor.mit.edu/)

is a software development environment

originally developed by Google. It allows

users with little or no experience of

programming to create applications that can be installed and run on devices running the

Android operating system. Towards the end of 2011, Google open-sourced App Inventor

and its development was taken up by the Mobile Learning Lab at the Massachusetts

Institute of Technology.

App Inventor uses a graphical interface, similar to that found in MIT’s Scratch. In

creating App Inventor for Android, Google drew upon significant prior research in

educational computing which was informed by constructionist learning theories. These

theories emphasise programming as a vehicle for engaging powerful ideas through

active learning.

As a blocks-based programming language, App Inventor all but eliminates a major

problem for learners presented by traditional text-based languages i.e. the requirement

to recall and type instructions according to a strict syntax.

At the time of writing, App Inventor was still in early development at MIT.

Consequently, it is strongly recommended that tutors using this pack spend some time

to familiarise themselves with the environment and the Known Issues section of this

resource before using it in the classroom.

http://appinventor.mit.edu

Page 6

Known Issues

 App Inventor is a cross-platform development environment (Windows, Macintosh &

Linux), but creates software for Android devices only.

 All users of App Inventor require a Google account (apps are stored in the cloud). It

is recommended that tutors ensure that learners have a Google account in

advance of them using App Inventor for the first time.

o The advantage of this is that learners are able to access their work at home.

o Tutors may also wish to keep a copy of learners’ usernames and password

reminder clues (known only to the learners themselves).

 Any proxy or web filtering must be configured to allow access to the App Inventor

URL.

 At the time of writing, App Inventor is best used with smartphones, not tablet

computers.

Using App Inventor in the classroom

 Whilst App Inventor offers users a software emulation of the Android operating

system, best results are achieved when using an Android smartphone connected

directly to the host computer for live testing of an application.

This is particularly relevant when using features such as text messaging or motion

sensing.

o For live testing, devices must be in debug mode. To enable this, go to

Settings→Applications→Development→USB Debugging

o In the blocks editor, select Connect to phone

 Once an App Inventor app has been completed, there are three methods of getting

it onto a phone:

o By generating a QR code which provides a download URL

(you will need a QR code scanner app such as QR Driod,

freely available from Google Play)

o By downloading a compiled and packaged .apk file onto a

computer which can then be copied to a connected phone

o Downloading to a connected phone via App Inventor (easiest for learners).

 It is recommended that learners leave all the App Inventor windows open, as

restarting the blocks editor and emulator can be sluggish. If they wish to free up

space on their screen they should minimise their windows rather than close them.

When a new App Inventor project is chosen, all windows will update to display the

new project.

Page 7

 Occasionally, it is necessary to restart an app during development. To do this:

o In the Blocks editor, choose “Connect to device”

and reconnect to your device/ emulator.

o AI will then ask:

 Use the Blocks Editor’s zoom control (opposite) to

enlarge blocks when demonstrating on the screen.

 Learners can create checkpoints which effectively

save successive versions of files. The use of checkpoints by learners is encouraged,

especially when developing their own apps.

Installation

App Inventor requires a little preparation before using it in the classroom…

 Whilst App Inventor is primarily browser-based software, it also requires a local

installation on client machines, both of App Inventor and the Java Runtime

Environment. The latter is often already installed on computers, but do check.

Installation instructions and files can be found at:

http://appinventor.mit.edu/learn/setup/setupwindows.html

http:// appinventor.mit.edu/learn/setup/setupmac.html

 Whilst App Inventor does support some models of phone natively, it is usually

necessary to install drivers for the phone you are using.

For this reason, it is strongly recommended that, when purchasing phones, try to

stay with the same manufacturer (and even model), to ensure the ability to easily

share phones between different client computers whilst installing just one driver

across a classroom.

 The URL of App Inventor should be whitelisted on any school proxy.

 As previously stated, users must have a Google account to log in. Users’ projects

are stored in the cloud, but can be uploaded from and downloaded to client

computers from the Component Designer screen. This is recommended for backup.

 Project files for upload/download are packaged as .zip files. Note that this is App

Inventor’s own package and not compiled .apk (Android Package files). .apk files are

compiled and packaged for use on a phone and cannot be edited in App Inventor.

It may be helpful to view App Inventor’s. zip files as source code and .apk files as

object code.

Above all, tutors are strongly recommended to test the installation on a learner

account before trying to use App Inventor with a class.

http://appinventor.mit.edu/learn/setup/setupwindows.html

Page 8

Useful resources

MIT’s App Inventor home page: http://appinventoredu.mit.edu/

tAIR – the App Inventor Repository: http://www.tair.info/

Publishing on Google Play

(formerly the Android Market)

Unfortunately, there is no direct method of uploading App Inventor files to Google Play.

Besides the lack of such a feature in App Inventor itself, the .apk files which App

Inventor creates are not in the required format and lack the required embedded

information.

Fortunately, some free tools have been created which can convert App Inventor .apk

files ready for publishing on Google Play:

 AppToMarket – available from http://amerkashi.wordpress.com/

 Marketizer – available from http://www.taiic.com/marketizer/

To publish on Google Play, you must also be a registered developer. To register as a

developer, you must do three things:

 Create a developer profile

 Agree to the Google Play Developer Distribution Agreement

 Pay a registration fee ($25.00) with your credit card (using Google Checkout)

The URL for this can be found at https://play.google.com/apps/publish/signup

Clearly, the ability to market an app in the real world could be a strong motivator for

learners and introduce a wealth of inter-disciplinary learning opportunities. It may be

that an establishment could create a single developer licence and a designated tutor

could deal with uploads, etc.

http://appinventoredu.mit.edu/
http://www.tair.info/
http://amerkashi.wordpress.com/
http://www.taiic.com/marketizer/
https://play.google.com/apps/publish/signup

Page 9

Lessons and approach

Tutors using this resource may wish to consider the following approaches:

Screencasts

In addition to a traditional booklet, this resource makes use of screencasts to deliver

some of the exemplar tutorials. Tutors wishing to use them may wish to use them on a

whole-class basis and/or for learners individually, stopping and starting as they need.

The rationale behind using screencasts is that learners can make quicker progress, as it's

more visual and immediate. Screencasts are also a medium that learners are familiar

with in their own digital lives via services such as YouTube.

As the lessons progress, it is assumed that learners have gained an understanding of

how to use the component designer, then the coding interface, so the use of screencasts

as “scaffolding” is reduced.

The screencasts used in this resource are available in two way:

 as movie files which can be used on individual computers or across a network

 on the “RSE/BCS Computing” YouTube channel at :

http://www.youtube.com/user/RSEComputing

Deep understanding

To accompany the lessons, there are sample written and discussion tasks to enable

learners and tutors to assess “deep understanding” of the Computing Science concepts.

This draws upon recent findings in the CS Principles course at the Universities of San

Diego and Glasgow. Aspects of this approach are also seen in UC Berkley’s The Beauty

and Joy of Computing course.

Traditionally, tutors have inferred the degree of learners’ understanding of what they

have learned from the programs they have produced; however, research has shown that

this is not always a strong indicator. Consequently, consolidation via quizzes, group

discussion, questioning and class work/homework should be used to enable the tutor to

formatively assess the learners’ understanding throughout the course, rather than

simply infer this from their completed apps.

http://www.youtube.com/user/RSEComputing

Page 10

Pair programming

Collaborative learning is a cornerstone of Curriculum for Excellence and these materials

encourage this, through pair programming. Pair programming can be defined as:

“… an agile software development technique in which two programmers work together

at one workstation. One, the driver, types in code while the other, the observer (or

navigator), reviews each line of code as it is typed in. The two programmers switch roles

frequently.

While reviewing, the observer also considers the strategic direction of the work, coming

up with ideas for improvements and likely future problems to address. This frees the

driver to focus all of his or her attention on the "tactical" aspects of completing the

current task, using the observer as a safety net and guide.” Source: Wikipedia

Pair programming can encourage collaboration between learners, as well as making

good use of available smartphones within the classroom

It is recommended that tutors explicitly advise learners to seek help from a neighbour

before asking the tutor for help. Tutors will, however, understand the need to ensure

that both learners are equally engaged in the work!

Suggested activities

Within these notes are suggestion about how tutors may extend. These should not be

seen as prescriptive, but as possible ways to enrich a task or topic. Tutors are free to

cherry-pick these, as going through all of them is likely to significantly extend the unit.

 Suggested activity These opportunities are indicated by Suggested activity in the left margin.

Inter-disciplinary learning

Mobile app development is a “rich” medium that offers ample opportunity for inter-

disciplinary learning. Within this resource are suggestions for possible inter-disciplinary

activities, as well as many of the activities being inter-disciplinary in themselves.

 IDL Inter-Disciplinary Learning opportunities are indicated by IDL in the left margin.

Page 11

Introduction to Mobile Devices

This section outlines the history of telecommunications through information, written

tasks and research for pupils.

It is up to tutors to decide whether to use this as an introduction or to embed the tasks

within the practical lesson sequence.

Page 12

A Brief History of the Telephone

Mr Watson, come here – I want to see you!

 Suggested activity Find out about other early researchers into the telecommunications and how Bell was

not the only researcher working on this (or, arguably, the first).

Going mobile

 Suggested activity Discuss with learners why mobile communication is so popular. Why is there a need

for it? What are the uses?

 Business

 Social

 Government

 Military

 etc.

 Suggested activity Tutors who have access to some legacy mobile phones or PDAs, could provide a useful

hands-on experience for learners.

 Some suggested answers are shown below.

Year Product Important features

1993 IBM Simon

The first smartphone – apps included a calendar,
address book, world clock, calculator, note pad, e-
mail, and games.
Touch screen
Text entered using "predictive" on-screen keyboard
or QWERTY keyboard. Price: $899

1996 Palm Pilot
PDA; Touch screen (with stylus)
Office apps as well as third party
Handwriting recognition plus on-screen keyboard

1998 Nokia Communicator
Smartphone that combined keyboard and screen in
a “micro laptop” clamshell format.

2002 RIM Blackberry
Smartphone with mini QWERTY keyboard
Introduced RIM messaging service
Very popular in business

2007 Apple iPhone
User-friendly multi-touch interface
First app store launched with 2nd generation (3G)

2008 HTC Dream First Android-based smartphone

Page 13

When mobile phones became smart phones

 Suggested activity Discuss what makes a smartphone “smart”.

 Suggested activity Show video of New York University researcher Jeff Han’s demonstration of multi-

touch interfaces in 2006, the year before the iPhone was introduced.

 http://www.ted.com/talks/jeff_han_demos_his_breakthrough_touchscreen.html

 For a desktop experience of multi-touch, show videos of Microsoft surface:

http://www.youtube.com/watch?v=6VfpVYYQzHs

 http://www.microsoft.com/surface/en/us/whatissurface.aspx

 Discuss with learners how quickly multi-touch has become ubiquitous and why.

Convergence: Bringing it all together

 Investigate the following technologies. Beside each one, write down its function (what

it does) and an example of a portable device (other than a smartphone) which uses it.

Microphone Function: Sound input

 Example device: Voice-activated device e.g. sat nav

 Loudspeaker Function: Sound output

 Example device: MP3 player

 Touch screen Function: Touch sensing

 Example device: iPod touch/nano

 Accelerometer Function: Orientation and motion sensing

 Example device: Nintendo Wii controller

 GPS sensor Function: Geo-location

 Example device: Satellite navigation e.g. Tom-Tom

 Bluetooth Function: Radio communication

 Example device : Cordless mouse

 CCD Function: Image sensing

 Example device: Digital camera

http://www.ted.com/talks/jeff_han_demos_his_breakthrough_touchscreen.html
http://www.youtube.com/watch?v=6VfpVYYQzHs
http://www.microsoft.com/surface/en/us/whatissurface.aspx

Page 14

 IDL Physics

What is an accelerometer? How does it work? In what other devices is this technology

found?

 IDL Physics

What is GPS? How does it work? In what other devices is this technology found?

 Discuss with your neighbour what you think will be the next big advances in

smartphone technology. Using either a graphics package or pencil & paper, draw a

labelled design for a smartphone 10 years from now.

Learners may use their answers from the “Going Mobile” investigation to look back a

decade. By seeing what smartphones could do then, they could try to extrapolate 10

years into the future.

Learners tend go on flights of fancy here, so they should be encouraged to look at

emerging technologies to see realistically where smartphones might be within a decade.

This could be given as a homework assignment, or learners could be encouraged to

share their ideas and present to the class.

 Suggested activity To support and stimulate the task above, show learners video of Nokia Morph project

(http://research.nokia.com/morph):

http://www.youtube.com/watch?v=IX-gTobCJHs

http://research.nokia.com/morph
http://www.youtube.com/watch?v=IX-gTobCJHs

Page 15

Telephone…or computer?

 Discuss with your neighbour what each of these could be within a smartphone.

Write down your answers.

Device Smartphone example(s)

Input Touch screen; microphone; accelerometer; GPS locator

Processing CPU; GPU (if present); DSP chip

Storage Internal flash ROM and expansion card (if present)

Output Touch screen, sound, vibration

Suggested activity Discuss what other devices might qualify as computers that we wouldn’t automatically

think of as computers.

 IDL Psychology/sociology/RMPS/responsible citizens

Smartphones are multi-faceted communications devices that have fuelled the social

networking phenomenon. What are the effects on society and individuals of always

being in touch?

 Discuss the pros and cons of mobile computing: health, safety, social interaction,

privacy, never being out of touch, keeping up with friends/family, etc.

 IDL Language

Class debate: [This house believes that] smartphones have been bad for society.

 Issues to research: road casualties caused by driver/pedestrian distraction, disruption to

sleep patterns due to exposure to blue light emitted by LCD screens, radiation emission,

being constantly in touch with work, etc.

 Contrast with the benefits of keeping in touch; increased business and convenience of

shopping from anywhere; leisure/games; general convenience of converged

technologies in a single handset.

Page 16

Smartphone software

Go over the concept of software and hardware. Make sure learners are comfortable

using the terms program and software and understand that programs are instructions

to the computer.

Stress that a computer is a deterministic machine i.e. it will do only as it is instructed.

Operating system

Ensure learners understand that when they use a computer, what they are actually

working with is an operating system. The particular hardware is less important.

The OS provides a means of accessing and controlling the hardware through program

instructions.

Investigation Write down the names of some mobile device operating systems and beside each one,

give the name of an actual device that it runs on. If you or someone you know has a

smartphone, write down what it is and the name of the operating system it runs.

 Mobile OS Actual Device

 Android Samsung Galaxy Ace mobile phone

 iOS Apple iPhone, iPad, iPod touch

 Symbian Nokia phone

 Windows Mobile Microsoft-based smartphone

 BlackBerry OS BlackBerry smartphone

Page 17

Apps

Investigation Write down the name of three desktop applications.

Beside each one, write down how much it costs.

 Microsoft Office – £109 (home & learner version)

 Adobe Photoshop – £657.60 (CS5, not discounted)

 FileMaker Pro – £219

 The Sims – £40

 Now investigate a mobile app store, such as Apple’s App Store or Google Play. Write

down the names of three mobile device apps and their cost.

 Learners could investigate Google Play or Apple’s App Store here.

Any 3 here – answers will vary

 Video How much does it cost to make an app? (Appiction: App Dev 101). Show and discuss:

http://www.youtube.com/watch?v=b3KAAdzx5VU

The mobile app industry

 Video Show video of young “bedroom developer” and discuss:

http://www.bbc.co.uk/news/technology-16306742

http://www.youtube.com/watch?v=b3KAAdzx5VU&feature=BFa&list=UUejvrH5V3Zs2ST2StY2mRKQ&lf=autoplay
http://www.bbc.co.uk/news/technology-16306742

Page 18

Further inter-disciplinary learning

Global Citizenship

In the developing world, many countries are leapfrogging wired networks in favour of

wireless networks accessed on mobile devices.

Maps of submarine cables:

http://www.submarinecablemap.com/ (clickable)

http://digg.com/newsbar/topnews/The_Internet_s_Undersea_World_Cable_Network_

Map

What has been the impact on local economies that are largely driven by sole traders at

markets? What role did this technology play during the Arab spring?

Responsible Citizens

Where do all the mobile phones go?

Investigate the problem of electronic waste and its disposal.

Chemistry

Smartphone touch screens are coated with Indium tin oxide, a rare earth compound

that is both optically transparent and electrically conductive. Rare earths are also used

several other areas of microelectronics.

Investigate rare earths:

 What are rare earths elements?

 Where are they found?

 What are some of their properties?

 What is the supply situation like?

Maths

Finnish company Rovio, creators of Angry Birds, spent approximately 100,000 euros

developing the game. It went on to make over 50 million euros in its first year alone.1

Imagine that you were given £100,000. Using a spreadsheet or other tool, analyse the

tasks involved in bringing a product to market and create a budget. Consider all the jobs

involved in creating a successful game and how you might divide up the sum to cover all

the costs.

1
 Source: http://www.wired.co.uk/magazine/archive/2011/04/features/how-rovio-made-angry-

birds-a-winner

http://www.submarinecablemap.com/
http://digg.com/newsbar/topnews/The_Internet_s_Undersea_World_Cable_Network_Map
http://digg.com/newsbar/topnews/The_Internet_s_Undersea_World_Cable_Network_Map

Page 19

Page 20

Lesson 1: Virtual Pet

Concepts introduced

 App Inventor environment with concepts of components, properties and code

 Event-driven programming

 Touch interface

Computational Thinking themes

 Abstraction

o what causes things to happen (event) : button click, canvas drag,

accelerometer shake

o when things happen (action following event)

o what happens e.g. sound plays, sound vibrates

o position represented x & y coordinates

 Pattern recognition

o same behaviours for cat & dog in Extension task

 Algorithm

o sequence

o event triggers action

Objectives

Learners should be able to:

 label the major parts of an App Inventor program

 understand how the components and blocks work and interact

 understand the difference between the user interface and the program code

Outline

 Engage: Demonstration of VirtualPet app

 Explore: Learners create VirtualPet app

 Explain: Learners individually annotate App Inventor handout

 Elaborate: Modify VirtualPet app

 Conclusion

Materials

 VirtualPet apps: VirtualPet1, VirtualPet2

 Screencasts: VirtualPet1, VirtualPet2

 Handouts: App Inventor Handout (see Appendix C)

Page 21

Introduction

This is the Android equivalent of a “Hello world” program and serves as an introduction

to the App Inventor environment.

 Demonstrate a fully-functional version of the app (File: VirtualPet1) to learners. For

this you can use a projector connected to a computer with the app running on the

Android emulator or display the app working on a phone (either installed or live

testing).

 Ask learners to predict what you should do and what will happen. Then show them

that if you touch the picture, the phone makes a noise.

Task 1: Getting started with App Inventor

 Learners should then load up screencast VirtualPet1, which will introduce them to

the App Inventor environment and assist with logging on, etc.

Task 2: Creating code

 Once learners have done this, they should open screencast VirtualPet2, which will

take them through creating the app themselves.

 Stress the difference between My Blocks (blocks available for your app’s

components) and Built-in blocks (general programming structures)

Task 3: Testing your app

 Help learners debug their app.

Task 4: App Inventor reference sheet

 Issue App Inventor Handout (see Appendix C) and get learners to fill it in,

annotating what they think the parts of App Inventor do. After they have finished,

collect the handouts and use them for formative assessment, to determine what

learners already understand.

 Pass out unmarked copies. Go through the answers with the learners, having them

write in the correct answers. Use the sample answers to guide the discussion, but

allow learners to offer their ideas, making sure they write down the correct answer.

 Ensure learners understand the difference between the interface and the program.

Learners should retain the handout for future reference.

Page 22

Extension task 1

 Replace the button with a Canvas component (Basic→Canvas), which has the

DrawingCanvas.Dragged block to detect dragging, rather than simple touch. This

allows simulation of stroking the cat, rather than simply touching it.

Extension task 2

 Add an empty Image sprite component (Animation→ImageSprite) under the cat’s

chin. Drag over this item to make the cat purr – i.e. for the phone to vibrate, using a

Sound.Vibrate block – when it’s stroked under its chin.

 Does the cat meow as well as purr when you stroke under its chin?

Discuss with learners what this tells us about how the image sprite interacts with the

canvas.

Did you understand?

a) Try out the app and describe the problem.

 App produces the same sound for both animals.

b) What change would you have to make to the code to correct it?

 Set appropriate sound source in each event before playing it (Set <sound

component>.source to<filename> block)

c) Now make your change. Did it fix the problem? Did you have any problems doing

this?

 Show learners what happens when set sound source block is inserted AFTER the

sound is played. Get them to predict this.

 Restart app and ask learners to predict what will happen when the Cat button is

clicked; then the Cat button again; then the Dog.

 The sound may be right to start with, but will be wrong when a different button

is chosen. Ask learners why.

 In this way, learners can be shown how the sequence of the code is vital to

achieving the correct output.

Once learners get program working, let them experiment with it.

NB They can use App Inventor’s Checkpoint facility (Checkpoint button in Component

Designer) to save their work at various points.

Page 23

Conclusion

 Revise components, properties and code.

 Ask learners to summarise what they saw and learned.

 Emphasise that the order of execution is vital when programming.

Stress that computer will do only what it is instructed/programmed to do.

If an app doesn’t work as expected, then we have made a mistake!

Further extension work

 Show how to amend the program to create buttons to change the picture and sound

for different animals (see VirtualPet2). Learners could use such an extension to

create a simple application to help very young children recognise well-known

animals.

 Use this app as the basis of a soundboard or virtual instrument e.g. a drum kit or

piano, using empty sprites as overlays on drums, keys, etc.

Page 24

Lesson 2: Finger Painting

Concepts introduced

 Touch screen interface

 Variables

 Procedures

 Interface design

 Event-driven programming: events and event handlers

 Maintain a running total variable

Computational Thinking themes

 Abstraction

o variable name/value corresponding to data in memory

o variable types: integer (brush size & line width); image

 Pattern recognition

o same behaviour for different colour button clicks

o similar behaviours for size button clicks

 Algorithm

o small & big size changes

 Decomposition

o general colour event breaks down to specific red/green/blue event

o general size change breaks down to small/big change

Objectives

Learners should be able to:

 explain the role of the component designer, block editor, and phone/emulator

 understand the role of problem decomposition - that it is important to break a

larger problem into smaller parts and solve one part at a time

 understand the event-driven nature of App Inventor programming

 understand that variables contain values and make programs easier to modify later

Outline

 Engage: Demonstrate working FingerPaint app

 Explore: Learners go through FingerPaint tutorial

 Explain: Tutor provides help as needed

 Evaluate: Tutor & learners check that apps work

 Elaborate: Tutorial extensions

 Deep understanding: Did you understand?

Page 25

Materials

 Apps: FingerPaint1, FingerPaint2, FingerPaint3

 Screencasts: FingerPaint1, FingerPaint2

Introduction

Display FingerPaint app (FingerPaint1) to learners.

Ask learners to predict what you should do to make it work and what will happen when

you do; then demonstrate the app. Whilst demonstrating the app, discuss the interface:

 Why are icons used?

 What are the advantages/disadvantages of using icon buttons instead of text

buttons?

 What effect does it have on the overall impression you get of the app?

Either show to whole class or let learners watch individually screencast FingerPaint1

which demonstrates creating the app’s interface.

Task 2: Creating the code

Point out that while we have a good interface, there is no functionality. Get learners to

run the app in the emulator to emphasise this.

Demonstrate problem decomposition by going over the algorithm with learners. Show

how you were able to deal with the overall problem by focussing on small parts of it

separately to make it more manageable i.e. “Divide & Conquer”.

Display algorithm and code for this app on the board and discuss how they are related.

Explain that algorithm and code are two representations of the same thing –an

approach to solving the problem. This is clear example of levels of abstraction: the

problem, the algorithm and the final code.

Stress that writing an algorithm allows you to work out the stages the program will have

to go through to solve the problem without worrying about the code.

Task 3: Fixing the Bugs

Introduce idea of programming errors. Stress that computers are deterministic, so that

if code doesn’t work as expected, it’s because the programmer has made a mistake.

2.1 Discuss with your partner what features your app would need to solve each of

these problems. Write your suggestions below:

Page 26

a) Paint colour: Create a new button for black paint (and code it)

b) Line width: Have more choices for line width; have a “slider” or other

control that lets you set a variable line width.

2.2 Discuss what you could do to reduce the chance of logic errors appearing in your

apps. Write your suggestions below.

o Design code carefully by writing down the algorithm in advance

o Trace through the algorithm before coding, trying to work out what the

computer would do, in order to catch errors in your design.

Variables

The use of variables is a key Computational Thinking concept (abstraction) and

important for learners to understand. A variable can be explained as a part of computer

memory in which we store a value. We then label it, like a box, so that we can

remember what’s stored inside.

Suggested Activity Pass out envelopes with names written on the front (such as “age”, “favourite colour”

“pet”, etc.). Inside each one, have a piece of paper with a value written on it. Take out

each value and put in a new one to demonstrate assignment of a new value to the

variable.

Use this activity to discuss the importance of creating meaningful variable names so

that we can recognise them easily in our program.

Use this activity to demonstrate data types i.e. we can’t assign a value for colour such

as “red” to an age variable, etc.

Ask learners:

Q: Why store information in variables? Isn’t it more complicated?

A: No! Variables make it easier for us to use and change information in a program.

Explain how variables allow us to generalise our code.

Some examples:

 Consider a game that displays a score which changes throughout the game.

Would we have a separate program line for every possible score in a game? No, we’d

have one program line, but refer to the variable. A variable is the only real way of

storing this information.

 Consider a program that calculates prices by adding on VAT.

Without variables we would have to set the value of VAT as a number in every

calculation in the program. If the rate of VAT changed, we would have to go through

Page 27

our code, changing the number every time we had used it.

By using a variable to store the rate of VAT, we would only need to change the value

assigned to the variable once.

Extension 1: More flexible brush size

Explain the common practice of changing value of variable by referring to itself

i.e. new value of variable = old value of variable +/- amount

This can be done by asking a learner to mentally add up a series of small numbers as you

provide them, then give you the final total. Ask the learner: How did you do this? You

maintained a running total, rather than remember all the individual numbers and add

the together at the end.

Demonstrate to learners adding a label to display the brush size variable (app

FingerPaint3 features this)

 Suggested activity This resource does not go into parameter passing explicitly; however, there is clearly

scope to introduce it here, especially for learners who have used procedures with

parameters in environments such as Snap!/BYOB. Such learners may see redundant

code which could be generalised using a single procedure to change brush size, with a

parameter/argument of +1 or -1 passed into it accordingly.

Extension 2: Any colour you like

This may require resizing of components, depending on the resolution of the phone, but

will make the app more useful

Extension 3: Cool feature

Note that this feature will only work on a phone, not the emulator.

Extension 4: Another cool feature

Shows learners how to save files permanently.

Note that this feature only works when the app is downloaded to the phone. It will not

work under live testing or on an emulator.

Page 28

Did you understand (part 2)?

2.3 What type of variable – text or number – would the following values be stored in:

 a) 23 – Number

b) Alice – Text

c) 3.14 – Number (despite point)

d) SG12 RDW – Text (despite digits)

e) Fourteen – Text

2.4 Using short variable names like a, b or c seems like it could save a programmer

time and effort in typing. Why would this be a bad idea?

 It makes it difficult to identify what value each variable is storing – and

therefore more difficult to correct bugs.

2.5 A variable name should always be as meaningful as possible – that is, the name

should suggest the value that’s being stored. However, we shouldn’t make it

longer than necessary.

 Write down suitable variable names for the names and scores for two players in a

game (four variables in all)

 player1; player2; player1score; player2score

2.6 Think of some non-computing examples of “variables” and their possible values.

An example is shown below:

 Variable: cutlery Possible values: knife; fork, spoon

 Variable: gender

Possible values: male, female

 Variable: musicalInstrument

Possible values: guitar, drums, piano, bass, flute

Page 29

2.7 A user starts up a FingerPaint app and immediately clicks ButtonBigBrush (code

shown below).

 However, when the user tries to paint, nothing appears on the canvas until they

click ButtonBigBrush a second time. Discuss with your partner why this happens

and what change(s) should be made to the code to fix this bug.

 Reason: The brushSize variable is initialised at 0. When ButtonBigBrush is

clicked, the canvas LineWidth is set to the current value of variable brushSize –

in this case zero – then the brushSize variable is incremented.

The lineWidth would therefore still be set to zero until ButtonBigBrush is clicked

again. Even then, it would always be one size “behind” the button clicks.

 Correct code:

 def brushSize as number 0
 when ButtonBigBrush.Click
 set global brushSize to global brushSize + 1
 set drawingCanvas.LineWidth to global brushSize

Conclusion

1. Explain the role of the component designer, block editor and phone/emulator.

 What does each do?

 How does adding a component affect the block editor/phone/emulator?

 How does creating a block of code change the designer/phone?

 Does interacting with the phone change the program code?

2. Why did we use variables for brush size instead of “hard coding” it?

 To make it easier to modify later. Using variables generalises the problem of

creating a brush size.

3. What is a bug? What different kinds are there?

 An error in code which stopes it from working as expected

e.g. syntax error; logic error.

Page 30

Lesson 3: MoleMasher game

Concepts introduced

 Problem decomposition and modularisation using procedures

 Timers/clock component

Computational Thinking themes

 Abstraction

o repetition

o position: x & y coordinates

o variable

 Algorithms

 Decomposition

o use of procedure to move mole

o use of procedure to update score

 Pattern Recognition

o use of one procedure being called repeatedly to update score

Objectives

Learners should be able to:

 understand the use of an algorithm to develop a solution to a problem

 become more familiar with translating an algorithm into code

 become more familiar with using variables

 use procedures to create a more modular program

Outline

 Engage: Demonstrate working MoleMasher app

 Explore: Learners go through MoleMasher tutorial

 Explain: Tutor provides help as needed

 Evaluate: Tutor & learners check that apps work

 Elaborate: Tutorial extensions

 Deep understanding: Did you understand?

Materials

 App: MoleMasher

 Screencasts: MoleMasher1, MoleMasher2

Page 31

Details

 Demonstrate a fully-functional version of the app (MoleMasher) to learners. For this

you can use a projector connected to a computer with the app running on the

Android emulator or display the app working on a phone (installed or live testing).

 Ask learners to predict what you should do and what will happen. Write this out as

Input, Process and Output

 Go through algorithm and try to elicit as much of the code from learners as possible

without using the screencast.

 Learners will likely need explanation of why we subtract the width & height of the

mole from the canvas width and height when generating random coordinates for

the mole to appear.

Pair programming

 Assign learners to pairs. Explain pair programming - one person is the "driver" and

does the clicking and typing. The other person is the "navigator" who has the

screencast and tells the “driver” what to do. Learners will swap roles every 5-10

minutes.

 Tutor should keep track of the time and announce that learners should trade places

at even frequencies. Monitor that both learners are contributing equally.

 Tutor should walk around and help pairs who are stuck as needed. If pairs complete

tutorial, they should save then begin an extension with a new file name.

Procedures

Emphasise to learners how procedures let us break a problem down into smaller

problems and solve each one separately.

 Stress that building a program from smaller “sub-programs” is a very important idea

in Computing Science. In the software industry, software is often written by teams

of programmers. By breaking down a problem into smaller tasks, it lets different

people or groups within the team works on separate parts of the program at once.

 For example, if a company were creating a word processing application, one group

of developers might work on the spell checker, another on the printing features,

another on the help screens and so on…

 Remind learners that a procedure is a "sequence of statements that you can refer to

as a single instruction" i.e. it’s like creating a new block.

Using the MoleMasher app’s UpdateScore procedure, explain why it’s more efficient to

define a procedure once and call it up repeatedly, rather than have the same code

appear several times in a program (Computational Thinking – abstraction).

 Q: Why?

A: Because if you need to change the code, you only have to change it in one place.

Page 32

Q: Where have we seen this idea already?

A: Variables

 Go back to the FingerPaint app and ask learners to look for repeated code that could

be made into a procedure.

Link in with comments here, pointing out to learners that they should always comment

a procedure to explain what it does. Remind them that comments are for programmers,

not users (a common misconception).

Did you understand?

3.1 How could you make the game more difficult for users?

 Change the interval property for the game timer, so the mole appears more
quickly.

3.2 Discuss the following examples from real life. What “procedures” could they be

broken down into?

 a) Getting ready for school

 Wake up, breakfast, washed, dressed, gather things, leave house

 b) Making breakfast

 Get bowl, get milk, empty cereal into bowl

Boil kettle, put bread in toaster, put teabag in pot, etc.

 Note that this is one of the stages in part a), showing that successive

decomposition can take place. Therefore one procedure can be broken down

into further procedures, etc.

 In the case of tea & toast, this could even be used to introduce the concept of

parallel processing i.e. whilst waiting for the toaster to pop up or the kettle to

boil, we get the other ingredients, for example.

Page 33

3.3 Discuss with your partner some examples of sub-tasks within a simple “space

invader”-type game that could be coded as procedures.

 Write them in the space below.

 Move ship, move aliens, update score, game over, etc.

 Stress that there are clear stages in the game that can be worked on separately.

3.4 A user scores 10 hits and 5 misses in a MoleMasher app, then clicks a Reset

button (code shown below).

 Write down the values displayed in LabelHitsNumber and LabelMissesNumber

after the Reset button is clicked.

 LabelHitsNumber: 10 ; LabelMissesNumber: 5

 The values have remained the same because the variables have been initialised

after setting the text values.

 Write down any changes you would make to the code for the Reset button below:

 when ButtonReset.Click do

 set global hits to 0

 set global misses to 0

 set LabelHitsNumber.text to global hits

 set LabelHitsNumber.text to global hits

Page 34

Lesson 4: Times Table Helper

Concepts introduced

 Further problem decomposition using procedures

 Fixed loops and loop index/counter

Computational Thinking themes

 Abstraction

o data type: Boolean

o selection: if

 Decomposition

o break down creation of table into procedures for header and body

 Pattern Recognition/Abstraction

o individual lines of each table created by repeated formula with variables

 Algorithm/Abstraction

o repeated formula for lines of table used again in weight & currency

extensions

Objectives

Learners should be able to:

 understand the use of an algorithm to develop a solution to a problem

 become more familiar with translating an algorithm into code

 become more familiar with using variables

 use procedures to create a more modular program

 understand the use of fixed loops and a loop variable

Outline

 Engage: Demonstrate working TimesTable app

 Explore: Learners go through TimesTable tutorial

 Explain: Tutor provides help as needed

 Evaluate: Tutor checks that apps work

 Elaborate: Tutorial extensions

 Deep understanding: Did you understand?

Materials

 App: TimesTable

 Screencast: TimesTable

Page 35

Details

 Demonstrate a fully-functional version of the TimesTable app to learners. For this

you can use a projector connected to a computer with the app running on the

Android emulator or display the app working on a phone (installed or live testing).

 Ask learners to predict what you should do and what will happen. Write this out as

Input, Process and Output

 Go through algorithm and try to elicit as much of the code from learners as possible

without using the screencast.

 Explain the use of a FOR loop to repeat a fixed number of times. Stress to learners

that this kind of loop requires that we know in advance how often a task is

repeated. If they have experience of an environment such as Scratch, compare it to

a REPEAT block.

 Dry run (on the board or on paper) a FOR loop e.g. repeat printing a sentence 5

times. Then introduce the use of the loop variable to number the sentences.

 Once learners have done this, go through the Times Table Creator algorithm with

them. Points to note:

o Q: How will we store the table number?

A: Use a variable

o Q: What are the main stages in this app?

A: Get the table number, create the header and create the table.

o Q: what would be the best way of dealing with the separate stages of

creating the header and creating the table?

A: Use procedures.

 Dry run on the board

o building up the text for each line of the table using both text blocks and

variable values

o then appending these to the label’s existing text.

Suggestion: link with incrementing a numeric variable in FingerPaint and

MoleMasher app.

 Link in with comments here, pointing out to learners that they should always

comment a procedure to explain what it does.

Extension 1

Stress to learners that this app requires no input from the user, but just uses the loop

variable and the multiplier of 2.2 to create a table.

Extension 2

Show the similarity between the TimesTable app and this one – it’s essentially the same

app, with a different multiplier variable.

www.x-rates.com is a good exchange rate web site.

Learners could also add a suitable background image to the screen component.

http://www.x-rates.com/

Page 36

Did you understand (part 1)?

There is a bug in the times table app.

After creating the first times table, it keeps adding new tables on to the end of

the previous one every time the display table button is clicked, instead of

replacing the current times table.

Try it if you haven’t already noticed this (you may have to scroll down on the

phone/emulator to see this, so make sure the Scrollable property is ticked in your

Screen1 component).

4.1 From a programming point of view, why is it a good idea to let the user enter the

table via an input box and store this in a variable?

 It generalises the problem (abstraction): using a variable allows us to deal with
any times table– and to use the same code to do so. The alternative would be to
have specific code for each times table (and obviously only permit a limited
choice of tables).

4.2 Discuss why you think this happens. Write your reason below.

 The Times Table label’s text property isn’t initialised; the app therefore
continually appends the new times table to the old one.

4.3 Discuss what change you would need to make to the code to prevent this from

happening. Describe it below.

 Set the text property of the Times Table label to an empty string at the start of
the CreateTimesTable procedure.

4.4 After discussing your answer to 4.2 (above) with your tutor, make the change to

your code. Did it fix the problem?

 A common mistake is that learners will try to initialise the property at the end of

the CreateTimesTable procedure, thereby “blanking out” the table that was just

created. It will seem to learners as if nothing is being displayed at all.

Page 37

Did you understand (part 2)?

There is another bug in the times table app.

Try clicking the Display Table button without entering a number. Your app will

display an error message then quit. This is known as a program crash.

Don’t crash and burn!

An app which crashes will attract very few users!

4.4 Discuss why you think the app crashed. Write your reason below.

 There is no value for the CreateTimesTable procedure to multiply the loop

counter with.

4.5 Discuss what could be done to prevent the app from crashing. Write down your

suggestion below.

 Prevent the app from continuing until it gets a [numeric] value into the text box.

Validating input

 Link into the fact that we have already tried to limit the range of possible inputs to

numbers by selecting the NumbersOnly property in the TextBox component.

 Once learners have created a Notifier which validates the input, ask them if it is still

possible to enter an invalid input. If so, what further measures could we take to

prevent the app from proceeding until it has a valid input?

Page 38

Did you understand (part 3)?

4.6 Write down a range of valid values for the following inputs:

 a) someone’s age: Numbers 0–1222

 b) the number of days in a month: 1-31

4.7 Write down an invalid value for a number that an app will divide another number

with.

 Zero.

4.8 In the previous example, we saw the use of an if…else statement to tell whether

or not the user had entered a value into the text box.

 Now consider an app which decides whether learners’ test scores resulted in a

pass or a fail (assume a pass mark of 50).

 Which of the following If…Else statements would produce the correct results?

Write the letters of the correct statements below the table.

A IF testScore = 50

 student has passed

ELSE

 student has failed

D IF testScore < 50

 student has failed

ELSE

 student has passed

B IF testScore <= 50

 student has failed

ELSE

 student has passed

E IF testScore ≠ 50

 student has passed

ELSE

 student has failed

C IF testScore >= 50

 student has passed

ELSE

 student has failed

F IF testScore > 50

 student has passed

ELSE

 student has failed

 Correct results (letters): C, D

2
 Jeanne Calment, the oldest verified human, died in Arles, France (the place of her birth) aged

122 years and 164 days on 4
th

 August, 1997.

Page 39

Lesson 5: Virtual Map Tour

Concepts introduced

 Lists as data structures

 Linking to external data services

Computational Thinking themes

 Abstraction/Pattern Recognition

o use of corresponding lists to hold related data

 Decomposition

o break down problem into noting list selection index and selecting equivalent

item from related list

Objectives

Learners should be able to:

 understand the use of an algorithm to develop a solution to a problem

 become more familiar with translating an algorithm into code

 become more familiar with using variables

 use procedures to create a more modular program

 understand the use of fixed loops and a loop variable

Outline

 Engage: Demonstrate working MapTour app

 Explore: Learners go through Map Tour tutorial

 Explain: Tutor provides help as needed

 Evaluate: Tutor checks that apps work

 Elaborate: Tutorial extensions

 Deep understanding: Did you understand?

Materials

 App: MapTour

 Screencast: MapTour

Page 40

Details

Demonstrate a fully-functional version of the MapTour app to learners. For this you can

use a projector connected to a computer with the app running on the Android emulator

or display the app working on a phone (installed or live testing).

Lists

Introduce the idea of storing related data in a list with learners, then build up to the idea

of tying multiple lists together with elements in equivalent locations.

Q: Where else could we use this?

A: For example, in a high score table, with names and scores stored in equivalent

locations of lists.

Extension 1

Learners can make this as local as they want – to their county, town or even street.

Extension 2: Cool feature

The Location Sensor has many blocks related to GPS such as longitude, latitude, altitude,

etc. Learners could create a live readout of any of these properties.

Further extension

 IDL Geography

Learners could create a geo-caching/treasure hunt app, with clues tied to locations –

either in their local area, or virtually, with clues visible from Google’s Street View.

If not set locally, the app’s locations could be within a country/city they are studying in

geography, or even a world-wide hunt around famous locations.

Page 41

Lesson 6: Heads I Win

Concepts introduced

 Conditional loops (and contrasting with fixed loops)

Computational Thinking themes

 Abstraction

o fixed repetition: FOR loop

o conditional repetition: WHILE loop

 Decomposition

o use of procedure to initialise

o multiple stages within loop

 Pattern Recognition

o use of same procedure for button click and accelerometer shake

 Algorithm

o counting length of run; reset initial value if run broken

Objectives

Learners should be able to:

 understand the use of an algorithm to develop a solution to a problem

 become more familiar with translating an algorithm into code

 understand the use of variables to maintain a count within a conditional loop

Computational Thinking themes

 Abstraction (through the use of variables)

 Pattern Recognition (through the use of one procedure being called repeatedly)

 Algorithms

 Decomposition

Outline

 Engage: Demonstrate HeadsIWin app

 Explore: Learners go through HeadsIWin algorithm and create code from this

 Explain: Tutor provides help as needed

 Evaluate: Tutor checks that apps work

 Elaborate/ Deep understanding: Did you understand?

Materials

 App: HeadsIWin

Page 42

Details

Demonstrate a fully-functional version of the HeadsIWin app to learners. For this you

can use a projector connected to a computer with the app running on the Android

emulator or display the app working on a phone (installed or live testing).

Go through algorithm and try to elicit as much of the code from learners as possible

without using the screencast.

This lesson is the first time learners will be required to create code from an algorithm

without the support of a screencast. In recognition of this, there is nothing in the

development of the app that that the learners have not been exposed to already (other

than the WHILE block).

Conditional Loop

Go over the idea of a conditional loop. Try to elicit situations where it could be used.

Do a dry run through the algorithm on the board, asking learners to pick a random value

for the side variable. Maintain a trace of the variables and show how the test in the loop

is applied every time. Keep this on the board for the extension tasks.

The event-driven nature of App Inventor forced the use of this tried-and-tested exemplar

for a conditional loop, as events cannot be handled inside one.

Extension 1

Learners will need to introduce a variable (e.g. tossCounter) to maintain a count of the

total number of tosses. Common mistakes include:

 Forgetting to declare and initialise tossCounter variable

 Incrementing the variable at the same point as incrementing headsCounter

(inside the IF statement)

 Forgetting to initialise tossCounter this every time ButtonTossCoin is clicked

 Forgetting to append the final value of tossCounter to the end of the output.

Extension 2

Learners need to work out the condition that ends the run i.e. a tails, and at this point

initialise headsCounter to 0 inside the else statement.

The output will surprise learners, especially in terms of its variability. It can be an

effective warning against the perils of gambling!

Page 43

Extension 3

Introduce a new variable (tailsCounter).

Learners will need to work out that this is an extension of the previous example,

whereby each side will re-initialise the counter for the other side i.e. a heads will result

in tailsCounter = 0 and tails in headsCounter = 0.

It will also introduce a complex condition into the loop i.e.

WHILE headsCounter = <6 OR tailsCounter<6

Q: Ask learners what would be the effect of changing the OR to an AND?

Q: Ask learners what would be the effect of changing the code to:

 WHILE headsCounter = <0 OR tailsCounter<0

or WHILE headsCounter = <0 AND tailsCounter<0

This could provide an opportunity to introduce the idea of an infinite loop. Contrast this

with a fixed/FOR loop and why the latter can’t be infinite.

NB If an app performs a lengthy operation, Android will block the app’s user interface

until the code has finished. In these circumstances, Android will display an "Application

not responding" (ANR) dialogue if an activity does not react within 5 seconds. From this

dialog the user can choose to stop the application, so choose any further work in this

respect with care!

Extension 4: Cool feature

Learners should recognise that they can create a procedure to toss the coin which can

be called in both the button click and accelerometer shaking events. This reinforces the

idea of procedures allowing us to write once and call many times.

NB Stress to learners that giving the phone any more than a gentle flick will cause the

app to at least hang (as it tries to process lots of shake events) or even crash.

Page 44

Lesson 7: Wiff-Waff Game

Concepts introduced

 Collision detection

 Working with graphics

 Motion detection and control

Computational Thinking themes

 Abstraction

o bat and ball properties

 Decomposition

o ball position determines action

o ball in same position as bat/edge/bottom

o use of procedures for set up; increase score; lose game

 Algorithm

o determine ball's position and act

 Pattern Recognition

o multiple use of procedure for increase score

o reinitialise game state after losing

Objectives

Learners should be able to:

 understand the use of an algorithm to develop a solution to a problem

 become more familiar with translating an algorithm into code

 understand the use of a timer (integral to ball component) to trigger events in a

program to maintain a count within a conditional loop

Outline

 Engage: Demonstrate working WiffWaff app

 Explore: Learners create WiffWaff game

 Explain: Tutor provides help as needed

 Evaluate: Tutor and learners check that apps work

 Elaborate/ Deep understanding: Did you understand?

Materials

 App: Wiff-Waff

Page 45

Details

Whilst this app requires more code than learners have previously produced, stress to

learners that they should concentrate on only one part at a time. By having the code

split into events or procedures, the task of creating the app is therefore made much

easier.

Point out to learners that the interval on the ball acts like a built-in clock/timer for this

component.

Learners are likely to require help coding the when ball reaches an edge stage of the

algorithm. This makes use of the when Ball.EdgeReached block w ith edge as a

parameter.

For bat collisions, learners should use the Ball.CollidedWith block, with their bat sprite

as a parameter (below). Once again, it is likely that they will require help with this.

Page 46

Did you understand (part 1)?

7.1 a) The algorithm above has a bug which shows itself when you lose. What is

it?

 It is impossible to restart the game.

 b) Describe what you would have to do to your algorithm to fix it?

Hint: the change should be made in the LoseGame procedure.

 Add a line to enable the start button.

 c) Besides allowing us to concentrate on one sub-task at a time, write down

one other benefit of splitting code up into procedures.

Hint: there is a clue in the answer to part b) above.

 It makes it easier to locate and correct errors in code. It also allows us to

add to a sub-task by making the changes in one place only i.e. it

generalises the problem.

7.2 Why do we test for a collision at the bottom of the screen in the if…else, rather

than the other sides?

 Because there is only one condition to test for which simplifies the code.

Extension 1: Skill levels

This will involve a certain amount of rearrangement of the components. Learners may

also wish to consider altering the scoring for different levels.

Further Extensions

 Include a TinyDB component to save the previous score.

 The author’s own students particularly enjoyed recording their own sounds,

especially for the LoseGame procedure. A taunt of “Wiff-Waff!” seemed to go down

best!

Page 47

Did you understand (part 2)?

Algorithm

Moving bat (using Orientation Sensor)

 if orientation sensor roll > 0 then (phone is tilted to the right)

 set the bat heading to the right (0)

 else (phone is tilted to the left)

 set the bat heading to the left (180)

7.3 What direction will the bat move if the phone is completely level?

 It will move to the left.

 Why?

 Because the roll value will be zero, which falls within “else” in the algorithm.

Page 48

Mobile App Project

Analyse

Working in pairs or small groups, brainstorm three ideas for apps.

As you do so, think about each app’s possible users and the need it’s going to fulfil.

Think of how it might link in with other subject areas you’re studying.

Encourage learners to consider the factors in bold (above). They may even wish to

include a user persona to help clarify this (below):

User Persona Example for app which sends friends a wake-up text

Jo

14 years old

Has to get up early for school (on weekdays) and a paper round (on
weekends, and holidays)

Tends to oversleep

Has received a warning for punctuality slipping below 90%

Owns an Android smartphone

Now discuss your ideas with your tutor.

Once you have agreed on a project, write down a fuller description of what the app will

do below. Include any mobile features it will use:

 The main issue to look out for here is to ensure that the scale of the project is

achievable for the learners concerned.

Design (Interface)

Make a sketch of your app’s interface

Your sketch should be labelled to show what each component does.

Allow learners to create wireframes of their app. Ensure these are appropriately

annotated.

There’s a good series of App 101 videos from Appiction on YouTube:

 Video Why design is important: http://www.youtube.com/watch?v=BuP29Zmglks

 Video Wireframing your app:

http://www.youtube.com/watch?v=nCmV-8xA48M

http://www.youtube.com/watch?v=BuP29Zmglks&list=UUejvrH5V3Zs2ST2StY2mRKQ
http://www.youtube.com/watch?v=nCmV-8xA48M&feature=related

Page 49

Design (Code)

Stress to learners that they should take time to get their algorithms right before

coding. Remember the ancient proverb: hours of coding can save minutes of design!

Implement

Remind learners about use of meaningful identifiers for components, variables and

procedures. Remind learners about the importance of internal commentary in code.

Test

Test your app to make sure it works.

Learners should perform self-testing and get their classmates to test . The may wish to

issues questionnaires to their test group.

Document

Let’s imagine that you’re going to sell your app on an app store.

Write down below a brief description of your app’s main features and how to use them.

Remember, you’re trying to get people to buy your app!

Learners should show consideration of their target market here.

Evaluate

Encourage learners to discuss and reflect honestly on their work.

Maintain

Now imagine that you are adapting your app to make it work on a tablet computer.

What changes would you make?

Brainstorm with learners aspects of tablet computing they might consider e.g.

 screen size

 is the app suited to a less portable device

 will it benefit from rich graphics

 does it requires a 3G connection (not standard on tablets), etc?

Some apps will therefore translate better to a tablet format than others.

Page 50

Inter-disciplinary learning in the project

Art & Design

Design an icon, splash screen or game character for your app.

Music

Create a soundtrack or jingle for your app.

Business education/art/media studies/languages

Create an international marketing campaign for your app. Assign roles to different

members of the team. Post it onto an app store and sell it for real – even if it’s just to

friends & family (see “Publishing on Google Play”, page 16).

 Video How to create revenue your app (Appiction App Dev 101)

http://www.youtube.com/watch?v=RxIPArYs8eI

 Video At what price should I sell my app? (Appiction App Dev 101)

http://www.youtube.com/watch?v=iZUkjSmzY3c

Language

Make a foreign language version of your app. This will mean translating the marketing

text and any on=screen text into the language you are studying. This is an important job

in the global software industry and is known as localisation.

Congratulations!

Encourage learners to continue their app development at home.

Point out that they have only scratched the surface and that there are many more

functions in App Inventor such as text messaging and social networking (e.g. Twitter)

integration to name just two.

http://www.youtube.com/watch?v=RxIPArYs8eI&feature=BFa&list=UUejvrH5V3Zs2ST2StY2mRKQ&lf=autoplay
http://www.youtube.com/watch?v=iZUkjSmzY3c&feature=autoplay&list=UUejvrH5V3Zs2ST2StY2mRKQ&lf=autoplay&playnext=1

Page 51

Appendices

Page 52

Appendix A: Learner Tracking Sheet

Name: __ Class: __________________

Stage Progress *
(D, C or S)

Date
completed

Comment

Introduction

Lessons

1: Virtual Pet

2: Finger Painting

3: Mole Masher

4: Times Table

5: Virtual Map

6: Heads I Win

7: Wiff-Waff

Project

Analysis

Design

Implementation

Testing

Documentation

Evaluation

Maintenance

PROGRESS *

Developing where the learner is working to acquire skills or knowledge

Consolidating where the learner is building competence and confidence in using the

skills or knowledge

Secure where the learner is able to apply the skills or knowledge confidently in

more complex or new situations

Page 53

Appendix B: Sample Code

Lesson 1: VirtualPet1

Lesson 1: VirtualPet2

Page 54

Lesson 2: FingerPaint1

Page 55

Lesson 2: FingerPaint2

Page 56

Lesson 3: Mole Masher (inc. extensions)

Page 57

Lesson 4: TimesTable Helper

Page 58

Lesson 5: Virtual Map Tour (inc. extensions)

Page 59

Lesson 6: Heads I Win

Page 60

Lesson 7: Wiff-Waff Game

Page 61

Appendix C: App Inventor Handout

The following four pages contain:

 the App Inventor Handout used in Task 4 of Lesson 1 (see page 21);

 sample answers for above.

Name: __________________________________ Class: _________________ Date: ________________

Mobile App Development: App Inventor

The screenshots below are from an App Inventor program called VirtualPet. When the program is running on a

phone, when you “stroke” the cat by clicking the picture, it meows.

Answer the questions below.

1. PHONE

a. Explain how the Virtual Pet app works from the user’s point of view:

 __

b. What happens if the user touches the picture of the cat?

 __

c. What happens if the user touches the “Stroke me!” text label?

 __

d. What happens if the user presses a button on the actual phone?

 __

2. COMPONENT DESIGNER

1. Palette: holds the components you can use in your program, separated into categories

2. Viewer: lets you arrange components on a rough preview of the phone screen

3. Components: lists components in the app

4. Media: lists media files for the app

5. Properties: of selected component

1 2

3

4

5

a

b

3. PROPERTIES (for button shown on page 1)

a. What does this mean about the image property for the button? What is it telling the computer?

b. What does this mean about the width and height for the button? What is it telling the computer?

 PROPERTIES (for label shown opposite)

c. What does this mean about the background colour of the label?

 __

 __

d. What does this mean about the text of the label?

 __

 __

e. What does this mean about the alignment? Is the label centred?

 __

 __

f. What does this mean about the text colour? What is blue?

 __

 __

g. What does this mean about the label? What would happen if it were unchecked?

4. BLOCKS EDITOR

a. Explain what the example program opposite does:

b. What is the event that causes something to happen?

c. What is the action that happens after the event?

c

d

e

f

g

Name: __________________________________ Class: _________________ Date: ________________

Mobile App development: App Inventor (Sample answers)

The screenshots below are from an App Inventor program called VirtualPet. When the program is running on a

phone, when you “stroke” the cat by clicking the picture, it meows.

Answer the questions below.

1. PHONE

a. Explain how the Virtual Pet app works from the user’s point of view:

The user strokes the cat by touching the picture of the cat. The phone makes a

meowing noise.

b. What happens if the user touches the picture of the cat?

The phone “meows” by making a purring sound

c. What happens if the user touches the “Stroke me!” text label?

Nothing

d. What happens if the user presses a button on the actual phone?

The phone does whatever that button means, like returning to main menu

2. COMPONENT DESIGNER

1. Palette: holds the components you can use in your program, separated into categories

2. Viewer: lets you arrange components on a rough preview of the phone screen

3. Components: lists components in the app

4. Media: lists media files for the app

5. Properties: of selected component

1 2

3

4

5

a

b

3. PROPERTIES (for button shown on page 1)

a. What does this mean about the image property for the button? What is it telling the computer?

 The button looks like the cat.png image rather than looking like a plain button

b. What does this mean about the width and height for the button? What is it telling the computer?

 The width and height are set automatically by the phone, based on the image size. The size will be just

enough and no more to accommodate the image.

 PROPERTIES (for label shown opposite)

c. What does this mean about the background colour of the label?

The background colour of the label is light grey. The light grey

fills the whole label area, surrounding the text

d. What does this mean about the text of the label?

The label displays the text “Stroke me!”

e. What does this mean about the alignment? Is the label centred?

The text is centred within the label; the label is not centred in

the screen.

f. What does this mean about the text colour? What is blue?

The text is blue.

g. What does this mean about the label? What would happen if it

were unchecked?

The label is visible. If the box were unchecked, the label would be invisible and hidden from view.

4. BLOCKS EDITOR

a. Explain what the example program opposite does:

When the button is clicked, the sound plays

whatever it is set to.

b. What is the event that causes something to happen?

The event is when the click/press of the button.

c. What is the action that happens after the event?

The sound plays, which means that the sound file

associated with the “SoundPet” component is

played.

c

d

e

f

g

