Use Case Diagram Practice
Mr Gumby’s Software Company

1. Mr Gumby runs a one-man software company. He wants to create a software package to keep track of his customers, jobs and finances. If customers want to request a consultation with his programming team (himself), the customer will email or phone. The manager (himself) will organise a time for the programmer (himself) to meet the customer. This time is communicated to the programmer and the customer.

After each step, draw a UCD to show the functionality described. You can use software to create each step, copy it, and add to it to create the next step.
2. The data entry operator (himself) updates the customer’s job history in the software. If the customer is new, a new account must first be created.
3. Mr Gumby, as manager, wants programmers to send the customer weekly reports on job progress.

4. After the job is completed and accepted by the customer, the manager sends the invoice to the customer. This involves first calculating the total cost of the job.

5. After business picks up, he hires a friend, Emily, to carry out data entry work for him. What changes are needed in the UCD?
6. The customer’s software contract includes a maintenance agreement which means Mr Gumby’s programmer will provide patches to the customer’s new software system, which is online.
[image: image1.png]

[image: image7.png]

Solution

1. Mr Gumby runs a one-man software company. He wants to create a software package to keep track of his customers, jobs and finances. If customers want to request a consultation with his programming team (himself), the customer will email or phone. The manager (himself) will organise a time for the programmer (himself) to meet the customer. This time is communicated to the programmer and the customer.

 SHAPE * MERGEFORMAT

Notes: Mr Gumby, the man, is not an actor. Since he carries out three distinct roles, there are 3 actors to represent the roles he plays. Notice the arrow heads to show which actor initiates the use case. Note the system boundary box to show the system’s functional scope. The ‘organise consultation time’ process has two outgoing lines to the actors involved in it. Do not include actors who have no interaction with any processes in the system. Types of actors are shown by a single instance of an actor. E.g. there might be dozens of customers, but they are all represented by the same actor shape. If there are related but distinctly different varieties of actors who use the system differently (e.g. local customers and international customers), include them with appropriate distinguishing names.
2. The data entry operator (himself) updates the customer’s job history in the software. If the customer is new, a new account must first be created.

 SHAPE * MERGEFORMAT

Note: since the ‘Create new account’ process is conditional on the customer being new, it is shown as an extend. Notice the direction of the from the extension process back to the task being extended. Think of “This process (the extension) extends that process (the one being extended). Note the dashed arrow.”

3. Mr Gumby, as manager, wants programmers to send the customer weekly reports on job progress.
 SHAPE * MERGEFORMAT

4. After the job is completed and accepted by the customer, the manager sends the invoice to the customer. This involves first calculating the total cost of the job.

 SHAPE * MERGEFORMAT

Note: Again, the arrow is dashed. Also note the direction of the arrow is the opposite of an <<extends>> arrow. Think of the <<includes>> as a significant process that must always be carried out whenever its parent process is carried out.

People will sometimes disagree about whether a process should be included as a normal process or as an <<include>>. If a process will always be carried out when another task happens, and it will never be carried out without the other task, it’s a good sign it should be an <<includes>>.

5. After business picks up, he hires a friend, Emily, to carry out data entry work for him. What changes are needed in the UCD?

Trick question. No changes are necessary since Emily’s (or anybody’s) data entry work is represented by the data entry actor. Remember that actors show job roles, not individual people.

6. The customer’s software contract includes a maintenance agreement which means Mr Gumby’s programmer will provide patches to the customer’s new software system, which is online.

Note: the customer’s system is not a person, but it is involved in Mr Gumby’s system’s functionality so it is included as an actor. Actors can be people, organisations or external systems like databases.
 SHAPE * MERGEFORMAT

Notes:
· These UCD solutions were drawn with Microsoft Word shapes. It’s not specialised UCD software, but it can be reasonably quick and easy to use. Alternatives include Dia (open source), gliffy.com (online) and MS Visio. In Word, start by going to Insert > Shapes > Insert new canvas.

· To create an actor, draw its circle and line bodyparts, select its component parts, right-click them and select GROUP. This makes them into a single unit that can be duplicated to create your other actors.
· The actor’s labels are inserted as text boxes formatted with no line colour and no fill colour.
· The processes are circle shapes which, when right-clicked, let you add text. Again, like any oft-used structure, once one is created you can duplicate it as often as you like and adapt each one to its new job.
· The includes and extends arrows are normal arrows that have their line property set to “dashed”.

· To create separate UCDs showing step by step development of the diagram, copy the entire canvas and paste it, then continue your development in the new copy.

Carefully note the similarities and differences between an UCD and a context/dataflow diagram:

· CD and DFD arrows show one-way single data flows which are labelled with the type of data flowing. In UCDs, arrows and lines show 2-way flow of many sorts of data which are not specified. Remember that CD/DFD specialise in showing data flows; UCDs specialise in showing the functionality of processes of a system and the outsiders who are use or are affected by the system.

· In CD and DFD, arrows show data flow direction; in a UCD the arrow indicates which actor initiated the process (is the active actor) and which are involved in it (passive actors).

· In a UCD participants in the system being described who are not part of the system are shown as actors around the system boundary box. In CD/DFD they are called external entities and are shown as rectangles. In each case the actors/entities can be human, organisations or other systems which interact with the system being described but are not part of it. Even other systems within the same organisation are shown as external entities/actors because they are not inside the system being described.

· Actors should only be shown once in a UCD; in CD/DFD they can be repeated to avoid lines crossing in a messy fashion.

· In both CD/DFD and UCD, processes are shown as circles and are labelled with an active verb and a subject, e.g. Organise (verb) consultation time (subject).

· Data stores are only shown in DFDs. They are not in CDs because CDs do not show the inner workings of a system, and UCDs only show processes and not internal data structures.

CD/DFD and UCD are designed to show very different information about system. In fact, they are used in conjunction to fully describe the data flows and the processes involved both within a system and with its external participants.
My compiler hurts

Manager

Programmer

Customer

Request consultation

Organise consultation time

Manager

Programmer

Customer

Data entry

Request consultation

Organise consultation time

Update customer job history

Create new account

<<extends>>}

{if customer is new}

Manager

Programmer

Customer

Data entry

Request consultation

Organise consultation time

Update customer job history

Create new account

<<extends>>}

{if customer is new}

Send progress report

Manager

Programmer

Customer

Data entry

Request consultation

Organise consultation time

Update customer job history

Create new account

<<extends>>}

{if customer is new}

Send progress report

Create invoice

Calculate job cost

{includes}

Manager

Programmer

Customer

Data entry

Request consultation

Organise consultation time

Update customer job history

Create new account

<<extends>>}

{if customer is new}

Send progress report

Create invoice

Calculate job cost

{includes}

Customer ‘s system

Patch customer’s system

UCD Practice - Gumby Software-v4.doc – page 6/6 by Mark Kelly

