Writing to a Text File in Visual Basic 2010 Express
You write to text files by using the StreamWriter class.
The first step of using this class is to declare an object of type StreamWriter, like this:
Dim TextFile As New System.IO.StreamWriter(“u:\test.txt”)
or like this:
Dim TextFile As New System.IO.StreamWriter(“u:\test.txt”, True)
Notes: The name ‘textfile’ is not at all magical – it can be anything. But calling it ‘Textfile’ reminds you what it is.

Make sure you can write to your U: drive when you run this code or you will get an error. Change U: to a drive to which you can write.

There are actually at least seven different forms of StreamWriter usage. I’m showing you the most common, but if you plan to do serious work with text files, you should read the Microsoft Developer Network (MSDN) document on the StreamWriter class.
As you can see, the second parameter is optional (it is omitted in the first example), and it determines whether you want to append to the text file if it already exists. If you omit this second parameter or supply False as its value, a new text file is created.

If the text file already exists, it gets replaced with a new file of the same name. If you pass True, as in the second example, the file is opened, and any write operations you perform on the file are tacked on to the end of the file.
If you pass a path/filename that doesn’t exist, Visual Basic creates a new text file for you when you write data to the StreamWriter object.
After you have an object that points to a StreamWriter object, you can store data in the text file, using one of the following two methods:
. WriteLine() sends a single line of text to the file and automatically appends a carriage return to the end of the line. Each call to WriteLine() creates a new line.
. Write() sends data to the file but does not automatically append a carriage return to create a new line.
Consider the following code snippet:
Dim TextFile As New System.IO.StreamWriter(“u:\test.txt”)
TextFile.WriteLine(“text1”)
TextFile.WriteLine(“text2”)
TextFile.WriteLine(“text3”)
TextFile.Close()
This snippet would produce the following data in the text file:
text1
text2
text3
Notice the last statement, TextFile.Close(). It’s vital that you close a text file when you’re finished with it, and the Close() method does this. In addition, you should also call TextFile.Dispose() to make sure that the file is fully released.
Now, consider the same code snippet that uses Write() instead of WriteLine():
Dim TextFile As New System.IO.StreamWriter(“u:\test.txt”)
TextFile.Write(“text1”)
TextFile.Write(“text2”)
TextFile.Write(“text3”)
TextFile.Close()
This snippet produces a text file that contains the following:
text1text2text3
Notice how WriteLine() creates lines of data, whereas Write() simply streams the data into the file. This is an incredibly important distinction, and understanding the difference is crucial to your success with writing text files. Which method you choose depends on what you are trying to accomplish. I think perhaps WriteLine() is the more common way. The following code illustrates how you could use WriteLine() to store a list of albums (assuming that you have the list in a list box titled lstAlbums):
Dim TextFile As New System.IO.StreamWriter(“u:\albums.txt”)
Dim intCounter As Long = lstAlbums.Items.Count
For intCounter = 0 To lstAlbums.Items.Count – 1

TextFile.WriteLine(lstAlbums.Items(intCounter).ToString)
Next intCounter
TextFile.Close()
Reading a Text File
Reading a text file is handled by the StreamReader class, which behaves similarly to the StreamWriter class.
First, you need to define an object of type StreamReader, like this:
Dim TextFile As New System.IO.StreamReader(“u:\test.txt”)
A key difference in declaring a StreamReader object versus a StreamWriter object is how the code behaves if the file is not found. The StreamWriter object is happy to create a new text file for you if the specified file isn’t found. If StreamReader can’t find the specified file, it throws an exception — an event you need to handle in your code.
Just as StreamWriter lets you write the data to the file in one of seven ways, StreamReader also has multiple ways to read the data.
The first of the two most common ways is to use the ReadToEnd() method, which reads the entire file and is used to place the contents of the file into a variable. You would use ReadToEnd() like this:
Dim TextFile As New System.IO.StreamReader(“u:\test5.txt”)
Dim strContents As String
strContents = TextFile.ReadToEnd()
TextFile.Close()
TextFile.Dispose()
MessageBox.Show(strContents)
The ReadToEnd() method can be handy, but sometimes you just want to get a single line of text at a time. For example, consider the text file created by the previous example, the one with a list of albums. Say that you wanted to read the text file and place all the albums found in the text file into a list box named lstAlbums. The ReadToEnd() method would allow you to get the data, but then you would have to find a way to parse each album name.
The proper solution for reading one line at a time is to use the ReadLine() method. The following code shows how you could load the Albums.txt text file, one line at a time, and place each album name in a list box:
Dim TextFile As New System.IO.StreamReader(“u:\albums.txt”)
Dim strAlbumName As String
strAlbumName = TextFile.ReadLine()
Do Until strAlbumName Is Nothing
lstAlbums.Items.Add(strAlbumName)
strAlbumName = TextFile.ReadLine()
Loop
TextFile.Close()
TextFile.Dispose()
How you know when you’ve reached the end of a text file? You know because that the return result will be Nothing.
So, the first thing this code does after creating the StreamReader object and the String variable is get the first line from the text file. It’s possible that the text file could be empty, so the Do loop tests for this. If the string is Nothing, the file is empty, so the loop doesn’t execute. If the string is not Nothing, the loop begins.
The first statement in the loop adds the string to the list box.
The next statement gets the next line from the file.
This sends execution back to the Do statement, which again tests to see whether we’re at the end of the file. One thing this code does not test for is a zero-length (null) string (””). If the text file has a blank line, the string variable holds a zero-length string. You might want to test for a situation like this when working with text files in your code.
That’s it! Text files are easy to work with and provide amazing and quick results.
Text data files and arrays and loops were born for each other. Using a text file to populate a listbox, array etc is far better than hard-wiring values into code. By reading your setup data from a file, it can be changed easily.

e.g. Consider a preferences file. You can let users change their program preferences, save the information to a file, and load the preferences file the next time the program runs.

Task 1: Imagine a program that usually greets its user in a messagebox when it starts. It then offers quick help to the user in a messagebox. Create a program that behaves as described above. It does not have to do anything else of any use.

Some users have complained that they don’t want the dumb greeting and they are sick of seeing the help every time. They want to be able to turn one or both of them off and on at will. Modify your program so the greeting only happens if checkbox chkGreeting.Checked=True. Similarly, the little help messagebox only appears if textbox chkHelp.Checked=True.

Add a button (cmdShutDown) that, when clicked, runs a subprogram that ends the program.

In the cmdShutDown code, add lines to write a text file called prefs.ini
If the file does not exist, it should be created.

Add code to write the value of chkGreeting.Checked and chkHelp.Checked (in that order) to separate lines in prefs.ini. Run the program, check both checkboxes, hit the Exit button, and inspect the contents of prefs.ini using a text editor or word processor. Notice that each line contains 1 – logical True – the value of the 2 checkboxes. Now add to your program’s startup code (in Private Sub Form1_Load).

Put in code that opens prefs.ini (if it exists) and reads the first line from it. Set chkGreeting.checked to the value in the line. (If 1 the checkbox will become checked. If blank, it is a logical False and the checkbox will be unchecked)

Now read the value in the second line and set chkHelp.checked to that value.

So now when the program begins, it looks up the user’s preferences and sets its behaviour accordingly.

Test that the greeting and help only appear if their values have been checked in the checkboxes.

 Task 1 SAMPLE SOLUTION
[image: image1.png]a3 Forml =1

Preferences File Test

7] Show Gresting
[T Show Help

Public Class Form1
Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 ' read our preferences file
 Dim TextFile As New System.IO.StreamReader("u:\prefs.ini")

 chkGreeting.Checked = TextFile.ReadLine()

 chkHelp.Checked = TextFile.ReadLine()

 TextFile.Close()

 TextFile.Dispose()

 'do stuff if preferences allow it
 If chkGreeting.Checked = True Then
 MsgBox("Greetings, earthling!")

 End If
 If chkHelp.Checked Then
 MsgBox("Help: Your preferences will be saved when you exit!")

 End If
 MsgBox("Modify your preferences if you like, then click exit so they are saved.")

 End Sub
Private Sub cmdExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdExit.Click

 Dim TextFile As New System.IO.StreamWriter("u:\prefs.ini")

 TextFile.WriteLine(chkGreeting.Checked)

 TextFile.WriteLine(chkHelp.Checked)

 TextFile.Close()

 TextFile.Dispose()

 End
End Sub
End Class
