Lesson Notes U40 –Application Linked to a Database
Resources:

1. SAMS Publishing. Teach yourself Visual Basic 2005. Hour 21
2. Graeme Summers 2003 Third Ed. Programming with Visual Basic. Introduction to VB.Net, Page 176.
In Unit 4 Outcome 1, part A, you will be required to build be an application that interacts with a database, and write a software report. In part B, you will be required to produce User Documentation (include in the report how you did it and references) as part of this application.

Visual Basic uses the ActiveX Data Object (ADO) technology, which is a set of library routines referenced at design time (but should be there by default). It also makes use of Object Linking and Embedding the database (OLEdB). These acronyms appear as software objects in the code, from which properties and methods are accessed.
This week’s Lesson notes will be a set of instructions leading you to construct two applications that each links to a database. One is basic and the other builds on your skills.

Project Instructions:

1. Read SAMS Hour 21 about a simple application that connects to a database from VB.Net allowing the user to manipulate database data from the external application interface.

2. From the supplied diagrams below, create this database in Access and the interface using VB.Net. Then add the supplied code behind the interface elements (see below). Run and debug. It may take you about 1-2 periods complete this exercise.
3. Then continue on to create the ATM machine application based on the Summers reference. This is more challenging and may take 2-3 periods to do. But these skills will enable you to easily tackle the approaching Outcome.
4. Answer the Questions/Tasks section at the end of this document. You will be asked to make extensions to the functionality of the Summers application.

SQL Language:

Note there is a statement Select * From Contacts appearing in frmMain_Load. This is called Structured Query Language (SQL), which operates at the database level and can be used to filter out data from a table or query. In this case the statement asks for all records from the Contacts table.

SAMS VB.Net application linked to a database

Database:

The database is easily created in Access. It consists of only one table with two columns. The fields are Contact Name and State.

[image: image1.png]Contact Name State

Donna Alister IC
¥ | James Foxall aLo|
John Smith Tas
Lisa Reese vic
Max Payne a

Steven McCarthy

Record: 14 « 2 > [kl cf 6

User Interface:

The VB.Net interface is simple. It consists only of text boxes and buttons as shown.

[image: image2.png]=10l

txtContactName tstate

thloveFirst

btnhloveNext btnMoveLast

| |) [| P

T
btnSave pmDelete
btnAddNe]

bintlovePrevion
New Cortact

Below is the VB.Net code to add behind the interface elements. Hint! Copy and paste the code located inside the subroutines, not the subroutine “shell”.

VB.Net Code:
Imports System.Data.OleDb

Public Class frmMain

 ' declare variables at the module level. These are "seen" in all

 ' the subroutines of this class

 Private m_cnADONetConnection As New OleDb.OleDbConnection()

 Private m_daDataAdapter As OleDb.OleDbDataAdapter

 Private m_cbCommandBuilder As OleDb.OleDbCommandBuilder

 Private m_dtContacts As New DataTable

 Private m_rowPosition As Integer = 0

 Private Sub frmMain_FormClosed(ByVal sender As Object, ByVal e As System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed

 m_cnADONetConnection.Close()

 m_cnADONetConnection.Dispose()

 End Sub

 Private Sub ShowCurrentRecord()

 If m_dtContacts.Rows.Count = 0 Then

 txtContactName.Text = ""

 txtState.Text = ""

 Exit Sub

 End If

 txtContactName.Text = _

 m_dtContacts.Rows(m_rowPosition)("ContactName").ToString()

 txtState.Text = _

 m_dtContacts.Rows(m_rowPosition)("State").ToString()

 End Sub

 Private Sub frmMain_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 m_cnADONetConnection.ConnectionString = _

 "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\temp\contacts.mdb"

 m_cnADONetConnection.Open()

 m_daDataAdapter = _

 New OleDb.OleDbDataAdapter("Select * From Contacts", m_cnADONetConnection)

 m_cbCommandBuilder = New OleDb.OleDbCommandBuilder(m_daDataAdapter)

 m_daDataAdapter.Fill(m_dtContacts)

 Me.ShowCurrentRecord()

 End Sub

 Private Sub btnMoveFirst_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnMoveFirst.Click

 ' Move to the first row and show the data.

 m_rowPosition = 0

 Me.ShowCurrentRecord()

 End Sub

 Private Sub btnMovePrevious_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnMovePrevious.Click

 ' If not at the first row, go back one row and show the record.

 If m_rowPosition > 0 Then

 m_rowPosition = m_rowPosition - 1

 Me.ShowCurrentRecord()

 End If

 End Sub

 Private Sub btnMoveNext_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnMoveNext.Click

 ' If not on the last row, advance one row and show the record.

 If m_rowPosition < (m_dtContacts.Rows.Count - 1) Then

 m_rowPosition = m_rowPosition + 1

 Me.ShowCurrentRecord()

 End If

 End Sub

 Private Sub btnMoveLast_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnMoveLast.Click

 ' If there are any rows in the data table, move to the last and show the record.

 If m_dtContacts.Rows.Count > 0 Then

 m_rowPosition = m_dtContacts.Rows.Count - 1

 Me.ShowCurrentRecord()

 End If

 End Sub

 Private Sub btnSave_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnSave.Click

 ' If there is existing data, update it.

 If m_dtContacts.Rows.Count <> 0 Then

 m_dtContacts.Rows(m_rowPosition)("ContactName") = txtContactName.Text

 m_dtContacts.Rows(m_rowPosition)("State") = txtState.Text

 m_daDataAdapter.Update(m_dtContacts)

 End If

 End Sub

 Private Sub btnAddNew_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnAddNew.Click

 Dim drNewRow As DataRow = m_dtContacts.NewRow()

 drNewRow("ContactName") = txtNewContactName.Text

 drNewRow("State") = txtNewState.Text

 m_dtContacts.Rows.Add(drNewRow)

 m_daDataAdapter.Update(m_dtContacts)

 m_rowPosition = m_dtContacts.Rows.Count - 1

 Me.ShowCurrentRecord()

 End Sub

 Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnDelete.Click

 ' If there is data, delete the current row.

 If m_dtContacts.Rows.Count <> 0 Then

 m_dtContacts.Rows(m_rowPosition).Delete()

 m_daDataAdapter.Update(m_dtContacts)

 m_rowPosition = 0

 Me.ShowCurrentRecord()

 End If

 End Sub

End Class

Simplified Summers ATM machine
Database:

[image: image3.png]=lolx|

Record: 14| T > [k of 6

0

Family Given SavingsAcct | _SavingsBal | ChequeAcct | ChequeBal

McLoughlan _ Trevor 12902 5650 12903 655
3061 Mahoud Yusef 12008 2995 12009 6750
4339 Calle Rhianna 12328 5790 12329 450
5114 Lee Melarie 12548 2480 12549 665
5213 Collins Robert 12873 1280 12674 3200
7601 OConner Michelle 12861 2300 12662 5420

0

The Customer database consists of seven fields including PIN, the customer name and balances for Cheque and Savings accounts. Note, the account numbers are not used by the application.

Interface:

[image: image4.png]" Cheque
1 2 9 & Savings
wa | (=]

The VB.Net interface has been simplified. It consists only of a label for the screen (lblScreen), buttons (btn0, btn1, btn2, ……..btn9, btnClear, btnOK, btnCancel, btnExit) and two radio buttons (rdbCheque, rdbSavings) as shown. The number pad is enclosed in a Group Box.

Once your design elements have been created, enter the code given below. Hint! Copy and paste the code located inside the subroutines, not the subroutine “shell”.

VB.Net Code:

Imports System.Data.OleDb

Public Class Form1

 '---

 ' Copyright for this module belongs to the author. You may freely use, copy

 ' and distribute for educational purposes only but not for commercial purposes.

 '

 ' Author: Harry Schlanger

 ' Date: 2/07/07

 ' Location: Belmont High School

 ' Email: big_koala@hotmail.com

 ' Purpose: Introductory database material for Unit 4, Software Development

 ' Description: This program is an Automatic Teller Machine (ATM) system to

 ' withdraw money from either Cheque strAccount or Savings strAccount.

 ' Money has to exist in the strAccount. The ATM expects a four digit

 ' PIN to be entered by the user. If accepted, it will ask for $$

 ' to withdraw. The balance will then be returned to the screen.

 '

 ' The interface is linked to an Access databse called CreditUnion.mdb

 ' located in the \bin folder of the VB.Net project. If moved from

 ' this location, a path to this database will need to be specified.

 '

 ' The software is based on the text by Graeme Summers 2003 Third Ed.

 ' "Programming with Visual Basic. Introduction to VB.Net"

 ' P176. Except that we have simplified it as much as possible AND

 ' proper naming convention has been introduced. We have also placed

 ' internal comments to explain the workings of the code.

 '

 '---

 'Declarations at module level

 Dim adpCustomer As OleDbDataAdapter

 Dim conCreditUnion As OleDbConnection

 Dim datCustomer As New DataSet()

 Dim strPIN, strAccount As String, sngChequeBal, sngSavingsBal As Single

 Dim blnPINEntry As Boolean = True, blnFirstDigit As Boolean = True

 Dim strWithDrawAmt As String = ""

 Private Function blnValidPIN() As Boolean

 '---

 ' The key to opening the application is for this function to be true!!

 ' The dataset containing Customer table is searched for the PIN and the row

 ' of data containing that PIN is returned and saved in rowCurrent

 ' (It's equivalent to running a query but everything is done automatically

 ' behind the scenes by the ADO and OleDb technologies)

 ' If the row is found - the application is unlocked. If no row is found,

 ' the application is not opened.

 ' The value of the function is examined where the function is called. That is,

 ' in btnOK_Click()

 '---

 Dim rowCurrent As DataRow = datCustomer.Tables("tblCustomers").Rows.Find(strPIN)

 Dim blnFound As Boolean = Not (rowCurrent Is Nothing)

 ' if data exists in the table then continue on...

 ' Get the field data from the record and store them in the program variables

 If blnFound Then

 sngChequeBal = rowCurrent.Item("ChequeBal")

 sngSavingsBal = rowCurrent.Item("SavingsBal")

 If rdbSavings.Checked Then

 strAccount = rowCurrent.Item("SavingsAcct")

 Else

 strAccount = rowCurrent.Item("ChequeAcct")

 End If

 'Display the user's name to validate the PIN acceptance

 ' write your own code here

 End If

 Return blnFound

 End Function

 Private Sub WasteTime(ByVal N As Integer)

 ' The value of N is the number of seconds to waste

 Dim Start As Date

 Start = TimeOfDay

 Do

 Loop Until DateDiff(DateInterval.Second, Start, TimeOfDay) >= N

 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 '---

 ' Connect to the database, then extract (or update) data from (to) the database

 ' via a data adapter named adpCustomer.

 ' The data is extracted (updated) using a SQL instruction located in the .CommandText

 ' method of the data adapter's .SelectCommand method.

 ' The queried data is placed in the program's DataSet() named datCustomer

 ' for easy access in the program.

 ' Key(0) is an array with index 0 to store a column of data

 '--

 Dim Key(0) As DataColumn

 Dim ConnectString As String = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

 "Data Source=CreditUnion.mdb"

 conCreditUnion = New OleDbConnection(ConnectString)

 conCreditUnion.Open()

 adpCustomer = New OleDbDataAdapter()

 adpCustomer.SelectCommand = New OleDbCommand()

 ' use the data adapter to run a query against the database

 With adpCustomer.SelectCommand

 .Connection = conCreditUnion

 .CommandText = "SELECT * FROM tblCustomers"

 .CommandType = CommandType.Text

 .ExecuteNonQuery()

 End With

 ' place the data into the DataSet named datCustomer for easy access

 ' then return only data that is in the first column (with index 0)

 adpCustomer.Fill(datCustomer, "tblCustomers")

 Key(0) = datCustomer.Tables("tblCustomers").Columns(0)

 datCustomer.Tables("tblCustomers").PrimaryKey = Key

 End Sub

 Private Sub UpdateBalance()

 ' Here we have to interact with the database as we wish to update data using an

 ' UPDATE query. To test if this works, it's best to first create the query in Access,

 ' then get the SQL from Access and copy it here.

 '

 adpCustomer.SelectCommand = New OleDbCommand()

 With adpCustomer.SelectCommand

 .Connection = conCreditUnion

 .CommandText = "UPDATE tblCustomers SET SavingsBal = " + sngSavingsBal.ToString + ", ChequeBal = " + sngChequeBal.ToString + " WHERE PIN = '" + strPIN + "'"

 .CommandType = CommandType.Text

 .ExecuteNonQuery()

 End With

 ' Refresh the data - use the data adapter to place the new tblCustomers data into

 ' the dataset datCustomer

 adpCustomer.Fill(datCustomer, "tblCustomers")

 End Sub

 Private Sub Transaction()

 Dim blnTooLow As Boolean

 blnTooLow = (rdbSavings.Checked And Val(strWithDrawAmt) > sngSavingsBal) Or (rdbCheque.Checked And Val(strWithDrawAmt) > sngChequeBal)

 With lblScreen

 If blnTooLow Then ' not enough in strAccount

 .Text = "Balance too low"

 .Refresh()

 WasteTime(2)

 Else ' enough to cover withdrawal

 .Text = "Transaction in progress"

 .Refresh()

 WasteTime(4)

 ' reduce amount in chosen strAccount

 If rdbSavings.Checked Then

 sngSavingsBal -= Val(strWithDrawAmt)

' enter your own code here

' display the Savings balance to the screen

 Else

 sngChequeBal -= Val(strWithDrawAmt)

' enter your own code here

' display the Cheque balance to the screen

 End If

 UpdateBalance()

 End If

 blnPINEntry = True

 blnFirstDigit = True

 strWithDrawAmt = ""

 strPIN = ""

 .Text = "Enter your PIN"

 End With

 End Sub

 Private Sub btnOK_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnOK.Click

 Static intBadPINCount As Integer

 blnFirstDigit = True

 ' If the digits are entered and valid, a transaction occurs with the database

 ' However, if there is a problem with the PIN or if there are too many attempts

 ' at entering the PIN, then a message is returned to the user via the Screen.

 With lblScreen

 If blnPINEntry Then ' entering PIN

 If blnValidPIN() Then

 blnPINEntry = False

 .Text = "Enter amount in $"

 Else ' invalid PIN entry

 strPIN = ""

 intBadPINCount += 1

 .Text = "Invalid PIN"

 .Refresh()

 WasteTime(2)

 If intBadPINCount = 4 Then

 intBadPINCount = 0

 .Text = "Card taken, see manager"

 .Refresh()

 WasteTime(2)

 End If

 .Text = "Enter your PIN"

 End If

 Else ' withdrawal amount entry (only multiples of $5)

 If Val(strWithDrawAmt) Mod 5 > 0 Then

 .Text = "Invalid amount"

 .Refresh()

 WasteTime(2)

 strWithDrawAmt = ""

 .Text = "Enter amount in multiples of $5"

 Else ' is a multiple of $5

 ' modify the data in the database

 Transaction()

 End If

 End If

 End With

 End Sub

 Private Sub btnClear_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnClear.Click

 blnFirstDigit = True

 If blnPINEntry Then ' entering PIN

 lblScreen.Text = "Enter your PIN"

 strPIN = ""

 Else ' entering amount to withdraw

 lblScreen.Text = "Enter amount in $"

 strWithDrawAmt = ""

 End If

 End Sub

 Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnExit.Click

 conCreditUnion.Close()

 End

 End Sub

 Private Sub btn1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btn1.Click, btn0.Click, _

 btn2.Click, btn3.Click, btn4.Click, btn5.Click, _

 btn6.Click, btn7.Click, btn8.Click, btn9.Click

 ' At the start of the program both blnFirstDigit and blnPINEntry are set to TRUE

 ' The entered number is stored into strPIN using the system object sender.Text

 ' and an * is returned to the Screen. blnFirstDigit is set to FALSE so that next

 ' digit that is read does not wipe the Screen but instead shows ** and the digit

 ' accumulates into strPIN

 ' ...and so on

 If blnFirstDigit Then ' starting entry

 lblScreen.Text = ""

 End If

 If blnPINEntry Then

 lblScreen.Text += "*"

 strPIN += sender.Text

 Else ' entering amount to withdraw

 lblScreen.Text += sender.Text

 strWithDrawAmt += sender.Text

 End If

 blnFirstDigit = False

 End Sub

 Private Sub btnCancel_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnCancel.Click

' add your own code here
 End Sub

End Class
Questions and tasks:

Find the spot in the code where you should add your own code to answer these questions

1. What occurs in these lines of code:
conCreditUnion = New OleDbConnection(ConnectString)
conCreditUnion.Open()
Ans:
2. In this set of instructions, the .CommandText instruction contains a query that will act upon the database. What data do you expect to be returned to the data adapter?

 With adpCustomer.SelectCommand

 .Connection = conCreditUnion

 .CommandText = "SELECT * FROM tblCustomers"

 .CommandType = CommandType.Text

 .ExecuteNonQuery()

 End With

Ans:

3. Add your own code to the Cancel button. Hint! you have to reset the Boolean flag that controls the PIN entry and have a suitable screen message

Ans:

4. Display the Savings or Cheque balance to the screen after a transaction is made. Hint! Go to the Transaction subroutine to add your code there.
Ans:
5. Display the user's name after validation of the PIN acceptance. Hint! Write your code in the function blnValidPIN().
Ans:
