Year 12 Information Technology Systems--- Forest Hill College

Exercise 1 – VB.Net
Aim: To investigate data types and develop error trapping strategies.

int ----- “integers “ or whole numbers

double ------ decimal numbers

boolean ------ Either “true” or “false” values

char ----- a single character

string ----- one or more characters

So far we have looked at some data types in use such as Integer and String. We will now extend this set of data types and more formally define them for a better understanding of the building blocks of data:

Variables and Data structures

Integers

Integers are whole numbers that have no fractional component. They can be represented by a number of different types, each having a varying range and varying size memory requirement. As expected the larger the range a type can take, the more memory it will require (size).

In general just the standard int type is used for numbers, the others are only used in specific circumstances depending on the application. When the range of number you have to represent is small, but you have to keep memory usage as low as possible shorts or even bytes are used. Alternatively when the range of numbers you need to represent is very large a long variable may be needed.

To declare an integer (int) in Vb.Net you use a declarative statement as follow:

Dim I As Integer
You can also initialise the variable to any starting value you want. This second example initialises the integer variable named “I” to the value 4.

Dim I As Integer = 4

Floating point numbers

Floating point numbers, or real numbers, are able to represent fractional numbers. As with integers there are difference levels of precision and memory requirement varies with the two different types.

Double stands for double precision floating point, not two decimal places.

Single stands for single precision floating point.

Examples:

Dim J As Double = 12.000000000001
Dim K As Single = 2.345678
Other types

The Boolean type is used for condition or status checks. It holds either the ‘true’ value or ‘false’.

Character type, char, holds a single character value. Such as ‘c’;
Strings

There are a number of other ways in which you might want to store data, or other types of data you want to store that isn’t easily don’t with the basic data types.

Commonly you don’t want to store more than a single character, of type char. It doesn’t make sense to use 10 different variables to store a 10-character word. There is a type of object called String that can hold a whole length of characters and allow meaningful text to be stored.

To add a string object to a Vb.net program you need to declare it as in the example below:
 Dim Name As String = " Stephen"

COMMUNICATING WITH THE PROGRAM – BASIC I/O

Programs have many ways to store data, as explained in the variables and data types section. To make use of these variables you need to communicate with the program and pass it information to store. The fundamental way of doing this is through the keyboard.

A common way to output data is simply to print it to the standard output, which is the screen. In Vb.Net the way to do this is to use the function:

Dim Name As String = " Stephen"

Console.WriteLine(Name)
OR

Console.WriteLine(“Stephen”)
OR
Console.Write(“Stephen”)

But a new line is not started when Write is used.

When these commands are being run you are essentially passing them a string of characters, identified between the talking marks: “string“. These output commands can take many more arguments, not just a single string.

Example:

Dim I As Integer = 4

Console.WriteLine(Name & I)
OR

Dim I As Integer = 4

Console.WriteLine(“Stephen” & I)
The output produced is:

 Stephen4

The last example uses a & operator between the “string” and the variable. When using the & operator with strings it concatenates the two strings together. In the example, the string ”Stephen” is concatenated with the value of I .

Exercises -- Summary:

A. Convert an Integer without Format Trapping (Introductory Exercise)
B. Convert an Integer with Format Trapping

C. Convert a Double with Format Trapping

D. Range and Format Checking with Doubles
E. Simple Arithmetic

Exercises --- Details:

A.
Convert an Integer without Format Trapping (Introductory Exercise)

1. Create a new project and name it “Exercise 1” and save it in a folder called vb.net or similar in H: drive. Create this folder if it doesn’t exist.

2. Create a form with a textbox, a Label and 3 buttons.

3. Create the interface and rename each of the objects txtEnter, lblDisplay, btnClear, btnInteger and btnExit respectively.

4. Change the text on each button to Clear, Exit and Display Integer respectively.

5. Code the Exit button to exit the program when pressed by using the command :

End

6. Code the btnClear button to delete whatever is in the txtEnter TextBox by using the command:

txtEnter.Text =””

7. Code the btnInteger to display the integer value of the number entered in the txtEnter TextBox in the lblDisplay label by using the command:

Dim I As Integer

Dim Str As String

‘ Get the String in the txtEnter TextBox

Str = txtEnter.Text()
‘ Display Str as an integer
lblDisplay.Text = Integer.parse(Str)

8. Enter integer values such as -4, 100, 678 and press the btnInteger button and write down what is displayed. Clear the txtEnter TextBox each time. Describe what is happening with the code that runs behind the btnInteger button.

9. Enter non integer values in the txtEnter TextBox such as 23.5, the letter “k” or a character like “(“. What happens , why ?

B.
Convert an Integer with Format Trapping

1. In the introductory exercise we worked with an integer data type and noticed the errors generated when the input was not correctly entered. We will now build an error checking feature into the original activity and extend further.

2. Continue with your program from the previous section.
3. Run the program with various integers as input such as: 5, 9, -45 and note the output

4. Run the program with non-integer input such as –4.3, hi, $5.55 and note the output.
5. Change the “btnInteger “code to have format trapping as follows:

 ‘ Code will execute from here when the button is pressed

Dim I As Integer

Dim Str As String

lblDisplay.Text = Integer.parse(Str)
 Try
Console.WriteLine("In Try … block code “)
lblDisplay.Text = Integer.parse(Str)
 Catch e As NullReferenceException

Console.Writeline(“Error !!! … In Catch block “)

Console.Writeline(“NullReferenceException Caught “)

 End Try

6. Use different test data to see how the modified program behaves.

 Eg. Integers and non integers.

7. Study the code that traps integer format errors

8. Modify the Console.Writeline to output a different message
9. If you can access help, study the parse code and describe what it does.

C.
Convert a Double with Format Trapping

1. Now, we will try to display the “double” data type to allow for decimal values.
2. Using the form in the previous project called Exercise1, create a new button and name it btnDouble
3. Change the text on the button to “Convert to Double”.

4. You are now required to convert the characters in the txtEnter TextBox to a double data type or generate an error if it is not possible to convert the value entered similar to the “Convert to Integer” event.

5. Click twice on the “doubleButton” to view the code you can put behind the button and you should arrive at:

Private Sub btnDouble_Click(ByVal sender as Object, ByVal e As System.EventArgs) _
Handles btn.Double.Click

End Sub

6. You are now required to enter the code that will allow a correct entry of data into the txtEnter TextBox (a whole or decimal number) to be displayed correctly and an incorrect entry of data in the txtEnter TextBox (letters, other characters) to produce an error message by trapping the error with the Try … Catch …statement. Your code will be very similar to the txtInteger code but with some change.
7. Fill in the explanation of the code as in the previous Integer example.

8. Clearly explain why the program works..

9. Run the program using various test data e.g. 200, 15.4, -4.5, 0.09

10. Then enter non-doubles $3.4, abc, myemail@hello.com
11. Write down what happens when each of these test data values is entered and then the “Convert to Double” button is pressed.

12. Study the code and modify at least 3 features in the code e.g. Variable names, or output messages.
13. Add comments to your code to clearly explain what the code is doing.
D. Range and Format Checking with Doubles

1. In this activity you are required to add one more button that will do the following

· Check that a Double entered is a valid double data type

· If valid, check that it is within a range e.g. [1.0 to 50.0].

· If either of the above is not satisfied, show the appropriate error message. That is “Not a valid Double”

2. Add one more Buttons following the steps in parts B or C above

3. Change the button name to “btnRangeFmtDble” and the text on the button to “Range Format Check”

4. Click twice on the “Range Format Check” button to view the code you can put behind the button and you should arrive at:

Private Sub btnRangeFmtDble _Click(ByVal sender as Object, ByVal e As _ System.EventArgs) Handles btnRangeFmtDble .Click

End Sub

5. Enter the following code to run when the button is pressed:
Private Sub btnRangeFmtDble _Click(ByVal sender as Object, ByVal e As _ System.EventArgs) Handles btnRangeFmtDble.Click

‘Declaration of variables
‘ Try … catch code to trap non double data

Try

Catch

End Try

End Sub

6. Study the previous code in sections B and C.

7. Enter the code from Section C to be placed in the code for the btnRangeFmtDble button.
8. An if statement is needed after the data entered in the txtEnter TextBox is checked for valid double data type to ensure the value entered is between [1.0 to 50.0] inclusive.
9. Appropriate error messages have to be output as follows:
a. Message if value entered is not a double
b. Message output if value entered is less than 1.0
c. Message output if value is above 50
10. Finally, if a correct double is entered between 1.0 and 50.0 this should be displayed on the lblDisplay Label.

11. Test the button with values 5, 1, 50, -2.4,300,$5 .60 writing down your results.

12. Change the valid range from 1-50 to 0 – 100. Test again.

13. Change the error messages to one of your individual taste and choice.

14. Save all your work.

E. Simple Arithmetic (addition +, subtraction -, multiplication *, division /)

1. In this activity you are required to add one more button that will do the following

· Check that a Double entered is a valid double data type

· If valid, calculate the GST and show an appropriate message with the GST amount.

· If the first item above is not satisfied, show the appropriate error message. That is “Not a valid Double”

2. Name the button btnGst, and the text on the button “Calculate GST”
3. You are to use the information above in the earlier examples and also the following:

· Declare a double variable called “gst”.

· To calculate 10% GST with a variable myDouble the statement is gst = myDouble * 0.1
· It is then necessary to display the gst variable in the lblDisplay label , with a “$” before it neatly.

4. Enter your code and test your work.

5. Make sure to put comments in your code.

6. Test with a range of values.

7. Save all your work.

F. Formatting Output after Simple Arithmetic (addition +, subtraction -, multiplication *, division /)

1. Currency output should have 2 decimal places at most e.g. $34.45 or $1.03. When you run your program in section E above, you will sometimes get quite untidy output such as $2.34567, $45.0006 and other non-currency type output.

2. In order to tidy up the output from your program it will be necessary to add more code to format output to your specification.

3. The following declaration will set up the format required of your output. Some formatting help is shown below :
Format(gst, “$##,###.00”)
4. Experiment with the format function and see what other variations are available to you through help.

5. Test your program with various input for correct formatting eg. 23.34, 1.08 etc

6. Test your changes. What were the results using 19.8765, 4.5693 and 1.2345678 ?

7. Save all your work

Try …

Catch …

statement

Kevork Krozian (2005
Page 3
Forest Hill College

