During our July workshop a group of us spent some time trying to pin down the difference between ‘Mathematical’ thinking and ‘Computational’ thinking. Although we worked our way toward an understanding we never quite managed it. Given that the Macquarie Dictionary defines ‘computation’ as the ‘the act, process, or method of computing; calculation’ and that calculation is an inherent part of Maths, this is not surprising.
While we may have a good ‘gut feel’ about the difference, I think it is important to not only be able to draw a clear line between the two, but also to be able to articulate that difference if we are to make a case for inclusion of computational thinking at year levels lower than senior school. First, those who do not see a difference could argue that all students do Maths therefore they are learning about computational thinking, and so we do not need a separate or extra stream to teach computational thinking. Second, by making the contrast clear, we can show that students are not, in fact, learning much about computational thinking at all (at least not deliberately). Third, the distinction helps to show how pervasive the results of computational thinking have become, and therefore why all students should be exposed to it.
In trying to characterise the difference for myself, I looked for a couple of problem examples that might be solved using both mathematical and computational thinking. The first might be a little too simple but I think that looking for the simplest example that will still provide some insights is a useful technique.
A simple problem

Suppose a grade three student’s only knowledge of arithmetic multiplication is that it is a grouping of equivalent sets; for example, 3 groups of 4. The student is asked to determine the value of 432 multiplied by 67. With her current knowledge, this presents her with a real problem. Let’s assume she is very clever!
To solve the problem, the student could:
Apply her mathematical understanding of multiplication and proceed to draw 43 groups of 67 dots. She would then count the dots.

OR

Partition the problem in such a way that she only has to perform a series of single digit multiplications (let’s say she knows her times tables to ten). She would then add all the intermediate results to give the required answer (she invents long multiplication).
While counting might be considered a computational activity, it seems fair to say that if the student were to take the first approach, then she would be thinking mathematically because she is directly applying a mathematical concept to visualize a problem and arrive at a result. 

If the student were to take the second approach, then she would be thinking computationally: she invents a process that reduces the problem to many small calculations. While her algorithm is informed by the mathematical concept of multiplication, it does not necessarily arise directly out of that concept.
A little more complex.
Say we are presented with a problem where it is necessary to integrate: 
[image: image1.wmf]dx

x

x

ò

-

1

0

4

2

)

1

3

(

6


We trawl through our well trained Maths brains and recognise that the chain rule is applicable. 

We apply the rule and arrive at the indefinite integral: 
[image: image2.wmf]c

x

+

-

5

2

)

1

3

(

5

1

.

From other parameters given in the problem we determine that c = 0, and by suitable substitution arrive at the result 
[image: image3.wmf]5

33

 (I think!).
Alternatively, perhaps our mathematical knowledge is not as good as it should be, but we do know that conceptually, integration is about finding the area under a curve. So, we divide the interval x = 0 to x = 1 into 1000 equal parts and, starting at x = 0, calculate the area of 1000 small trapeziums whose ‘height’ is 0.001 and whose ‘top’ and ‘bottom’ are determined by suitable substitution of increasing values of x into the original expression. These thousand areas would then be added to give a value somewhere close to 
[image: image4.wmf]5

33

 (a computer could be handy here!).
Here the distinction between mathematical and computational is much clearer. In the first approach we are thinking mathematically: we draw on a large knowledge base concerning integral calculus to recognise the mathematical properties of the problem, and then move from one mathematical statement to the next. The only time computation occurs is at the end where a simple arithmetic computation is carried out to get the final answer.
While an understanding of what integration means is required for the second approach, if we followed it, we would be thinking computationally: we construct a numerical model of the situation that is consistent with the concept of integration, and then carry out a series of simple numerical calculations. 
With this example, in going from mathematical to computational thinking we have replaced extensive mathematical thought with extensive thinking about structure and process. We have replaced a set of holistic mathematical statements with a set of discrete computations.
Mathematical thinking v Computational thinking
Both kinds of thinking take place in a problem-solving context.

Both require an understanding of maths and computation, however,

· the former requires a deep understanding of the mathematics involved in the problem domain, while any computation is minor if not trivial, 

· the latter needs at least a conceptual understanding of the maths involved but not necessarily anything more, while the computation component is not trivial and may require deep thought as to the best process to use. That thought is informed by knowledge about ways in which data can be structured and manipulated.
Both require clear formulation of the problem, however, 

· in thinking mathematically, one tries to represent the initial state of the problem as a series of formal mathematical statements; for example, as a set of equations,
· in thinking computationally, one tries to represent the initial state of the problem as a structured set of data or possibly as a set of rules for generating that data.
Once the problem has been formulated,
· the mathematical thinker tries to move from formal mathematical statement to formal mathematical statement until the desired goal is achieved.

· the computational thinker tries to devise a series of calculations together with a set of rules that govern the order of those calculations. Hopefully, once complete, the calculations produce the desired result.
Simplistically it seems to boil down “how can I argue formally toward a solution?” versus “how can I calculate my way to an answer?” For high-school maths problems these can look the same, but I would argue that secondary school Maths hits all of the first dots points above most if not all of the time, and rarely, if ever, takes a computational view of problem solving, despite all the calculating that might be happening.
With mathematical versus computational thinking I cannot help but be struck by the parallel with analog versus digital ‘computation’: one, in some sense, captures a holistic representation of the problem and allows it to evolve holistically toward a solution (analog/mathematical thinking); the other reduces the problem to a set of discrete bits, manipulates the bits in ways that may bear no relation to the ‘real world’ of the problem, and pops out with an answer (digital/computational thinking).
R.Timmer-Arends, 12 Aug 2012.
_1405008588.unknown

_1405012997.unknown

_1405012983.unknown

_1405007872.unknown

