
Using Xcode
Version 4 for

Absolute Beginners

Chapter 1

Zach Alexakos
2012

Copyright: Zach Alexakos 2012

Table of Contents

Chapter 1

INTRODUCTION:— 3

CREATING AN APPLICATION:— 4
Template 1: Anaysis Template Detail Sample— 5
Template 2: Developer’s Analysis Template — 6
Table 2: Developer Icon and Image Recommendations and Requirements— 8

THE DESIGN STAGE— 9

CREATING A PROTOTYPE:— 9

YOUR FIRST APPLICATION- “HelloWorld”— 9

ADDING A VIEW CONTROLLER- “HelloWorld”— 16

TROUBLESHOOTING:— 29

Copyright: Zach Alexakos 2012

Copyright: Zach Alexakos 2012

INTRODUCTION:

The software used to create iPhone and iPad applications is called Xcode- which is Apple’s
IDE (Integrated Development Environment). One of the reasons for Apple’s success with its
mobile devices has been the ability to display applications clearly regardless of the size of the
device. The quality of the artwork is also very appealing and this combined with the func-
tionality of the various applications provided has ensured global success and global recogni-
tion.

You may have also heard of Android which belongs to Google. The Android SDK (Software
Development Kit) is used to create applications for Phones and Tablets that run the Android
Operating System. More information can be found on this link: http://en.wikipedia.org/wiki/
Android_%28operating_system%29 . Google purchased Android in 2005 and since then has
developed a platform and development kit that has exceeded Apple’s platform in sales for the
first time in 2010.

In Apple’s iOS, which is derived from Unix BSD, there are four abstraction layers: the Core
OS layer, the Core Services layer, the Media layer, and the Cocoa Touch layer. Android con-
sists of a kernel based on the Linux kernel, (which is a variant of Unix), with middleware,
libraries and APIs written in C.

While both platforms utilise the C programming language in various modified forms, Apple
uses Objective C and Android uses C. Knowledge of the C programming language as a result
is very useful and while it is not intended to make this course a purely programming set of
lessons, it is nevertheless important to understand some basic programming concepts used to
create the code that drives mobile applications.

The main goal of this course is to encourage the student to develop applications for either
platform however the primary focus here will be to learn to develop applications for the iOS
Apple platform.

Zach Alexakos September 2011

Copyright: Zach Alexakos 2012

http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Android_%28operating_system%29

CREATING AN APPLICATION:

We could just start pressing buttons and creating any old application but the truth is it prob-
ably won’t work and will end up becoming an unpleasant experience. In order to create an
application that is both useful and satisfying for both the developer and end user we need
to follow a number of steps to ensure, (i) the creation of a high quality final product and (ii)
achieving the goals and objectives set out in our design.

To start with let’s look at our Problem Solving Methodology:

Table 1: Problem-Solving Methodology
1) Analysis 2) Design 3) Development 4) Evaluation

Solution
Requirements

Solution
Design

Coding Strategy

Solution
Constraints

Evaluation
Criteria

Validation Report

Scope of Solution Testing

Documentation

1

The Problem Solving Methodology provides a useful starting point for developing an applica-
tion where the scope and recognition of ‘usefuleness’ is apparent to both developer and end
user. Apple states that a good starting point is to “Create an application definition statement
early in your development effort to help you turn an idea and a list of features into a coherent
product that people want to own”.2

This is where our analysis begins. What is the problem to be solved? What do we need to
solve the problem? What will prevent us from achieving a solution to our problem? Ulti-
mately what is the scope of our solution?

In order to get the “ball rolling” we need to investigate and write down some ideas to see if
they will work. Using a template that includes the sub-steps of analysis will help.

1 VCAA, VCE Study Design, Information Technology, p 16, 2011-2014. http://www.vcaa.vic.edu.au/
vce/studies/infotech/softwaredevel3-4.html
2 Apple, iOS Human Interface Guidelines, Chapter 2, p 25, 2011

Copyright: Zach Alexakos 2012

Template 1: Anaysis Template Detail Sample

Analysis Template
Problem to be Solved (One sentence statement)

Application Definition Statement
(Required by Apple)

What is the main purpose of the application?

Scope of the Solution What are the benefits of the Application? (Efficiency, Effective-
ness, Capabilities of Application?) What can the Application do?

Constraints of the Solution What can’t the Application do?
(Consider hardware, software, people, data/informatin con-
straints)

Ideas and Features of the
Application

For example, if the
Application was to
be about Stock Mar-
ket fluctuations then
first page to contain
list of World Markets
to choose from- ie:
DOW, ASX, FTSE etc

If the Application
is about Fuel Prices
then a list of Fuel
Types could be ap-
propriate on the first
page- ie: PULP, ULP,
DIESEL, LPG

If the Application
is about Grocer-
ies the list page
may contain a list
of Stores, Prices,
locations and so
on.

Who is Your Target Audience? If your Application is
about Fuel Prices are
you targetting Heavy
Vehicle Drivers? Die-
sel Car Drivers? All
drivers? High Mileage
Drivers?

Once you’ve worked out your target au-
dience, choose the top 3 characteristics
of this group.

Copyright: Zach Alexakos 2012

Template 2: Developer’s Analysis Template

Analysis Template
Problem to be Solved

Application Definition Statement
(Required by Apple)

Scope of the Solution

Constraints of the Solution

Ideas and Features of the
Application

1)

2)

3)

4)

5)

6)

7)

8)

9)

Who is Your Target Audience? A)

B)

C)

1)

2)

3)

Copyright: Zach Alexakos 2012

Apple recomends that developers of Applications also include some planning of “features,
controls and terminology used” to make the process more efficient. Will the users of the Ap-
plication want a simple background or a thematic artistic background to their application?
Will the Application be jammed full of information or will the content displayed be selective
and spread out across the screen?

One of the key features of the iOS devices, including Android and other platforms is the ‘uni-
formity and cohesion of appearance’. In order to achieve this there are a number of “Platform
Characteristics” that must be adhered to:

1) Controls should look tappable. Using buttons, sliders, pickers that are con-
toured and graded to invite touching.

2) Ease of Navigation. Use the Navigation Bar for hierarchical content and the
Tab Bar for displaying peer groups of content and functionality.

3) The User Interface or UI should look the part regardless of the device used.
iPhone Apps don’t look good when simply upscaled to fit an iPad screen. The
Application must be created specifically for the device.

4) Make sure the application does what it is advertised to do. Leading users ‘off
the beaten track’ is a great way to receive global negative feedback and low
downloads. Make sure your Applications does what it was intended to do.

5) Beware of customisation and stick with the standard control designs. Jailbro-
ken iPhones and iTouches might look good to the Jailbreaker but often they
look tacky and are difficult to navigate for other users. The same applies to
customised Applications. People are reluctant to learn new processes for deal-
ing with information so if it doesn’t look familiar, people are less likely to use
it, let alone download it.

6) Let users scroll. Don’t squeeze information onto a screen in size 8 font which
users will not read. Allow use of the scroll function or create a link page. Re-
member 3-5 more ‘hops’ to different pages in an Application and the user will
be annoyed and eventually give up on the App.

7) Test your design, Test the UI elements and test the functionality of your Ap-
plication. Observe your testers or end users to gauge their responses, body
language and feedback. Remember the first answer is not always the most
truthfull response, you will need to pry and ask, using tact of course, what
your end user thinks of your Application.

Copyright: Zach Alexakos 2012

Table 2: Developer Icon and Image Recommendations and Requirements

Description Size for iPhone and
iPod Touch (in pixels)

Size for iPad (in pixels) Guidelines

Application Icon
(required)

57 x 57
114 x 114 (high resolu-
tion)

72 x 72 1)
-Make sure icon has 90
degree corners. Does not
have shine or gloss.
-Does not use Alpha
Transparency.
-Make sure icons have
‘visible’ backgrounds.

App Store icon
(required)

512 x 512 512 x 512

Small icon for Spotlight
search results and Set-
tings (recommended)

29 x29
58 x 58

50 x 50 for Spotlight
Search results
29 x 29 for Settings

Document icon
(recommended for

custom document types)

22 x 29
44 x 58

64 x 64
320 x 320

iOS can create a Docu-
ment Icon by default
otherwise you can make
your own.

Web clip icon (recom-
mended for web applica-

tions and websites)

57 x 57
114 x 114

72 x 72 As for 1)

Toolbar and Navigation
Bar icon (optional)

Approximately 20 x 20
Approximately 40 x 40

Approximately 20 x 20 -Use pure white with ap-
propriate alpha transpar-
ency.
-No drop shadow
-Use anti-aliasingTab bar Icon Approximately 30 x 30

Approximately 60 x 60
(high resolution)

Approximately 30 x 30

Launch Image (required) 320 x 480
640 x 960 (high resolu-
tion)

For Portrait
768 x 1004

For Landscape
1024 x 768

Supply an image for both
Portrait and Landscape
orientations.

*PNG Format is recommended for all icons and images. Standard depth bit for icons and images is 24 bits
(8 bits for red, green and blue each) and an 8 bit alpha channel.
*Alpha transparency can be used in icons created for navigation bars, toolbars and tab bars it is not to be
used in application icons.

Copyright: Zach Alexakos 2012

THE DESIGN STAGE
CREATING A PROTOTYPE:
Once you’ve worked out what it is that you will be creating it is usually a good idea to cre-
ate a Prototype using the Xcode Templates to build a basic version of your Application. Ask
other students or developers to use your ‘template application’ to gain a better understanding
of what works, what doesn’t and how to improve the application’s look and feel. The useful
aspect of design for an iPhone or iPad Application is the ability to design using the existing
device and Xcode software simulator.

However before starting your own project it is important to begin with an understanding of
the interface and features of Xcode. Once you have familiarised yourself with the features,
layout and coding required in Xcode you will be on your way to creating high quality applica-
tions. As a result we will devote a significant amount of time with learning the basics of using
Xcode, including using simple code for user inputs and screen outputs.

YOUR FIRST APPLICATION- “HelloWorld”
Let’s start with opening the Xcode application. Follow the image steps provided:

1) Find and Click on the Xcode application on your Macintosh HD drive in Developer.

Copyright: Zach Alexakos 2012

2) Once the Xcode welcome window is open click on ‘Create a new Xcode project’.

3) Now click on ‘Window-based Application’. Also take note of the additional templates in-
cluded.

Copyright: Zach Alexakos 2012

4) We are making an Application titled ‘HelloWorld’. Type this in the Product Name and
make sure your screen matches the settings below.

5) Click ‘Next’ and Create a Folder called iPad/iPhone Files. Save the File ‘HelloWorld’ in the
Folder.

Copyright: Zach Alexakos 2012

6) When you click the ‘Create’ button the following screen should appear.

7) Study the features of the Xcode interface and then click on the Project Menu. Select Run.

Copyright: Zach Alexakos 2012

8) The following screen will appear. This is your Design Window. On the Top Left Click on
the Drop down list and select iPhone 4.3 Simulator.

9) Now select the Product Menu and Click Run.

Copyright: Zach Alexakos 2012

10) and 11) The following screen will appear. You can switch pages using your mouse point-
er.

12)
Quit
the
Simulator.

Copyright: Zach Alexakos 2012

13) Now we are back to our Design View.

14) Double Click on ‘main.m’. The following code will appear. Study the code to understand
what it is doing.

Copyright: Zach Alexakos 2012

As shown in screenshot No. 14 we have created a instance of the Hello World Program, with-
out inputs or outputs. The program runs but it doesn’t do anything. What we now need to
do is set it up to output some kind of message and permit the user to manipulate the message
displayed.

ADDING A VIEW CONTROLLER- “HelloWorld”
As the name suggests the View Controller is the screen the end user sees when loading an
applcation on their device whether the device is an iPhone or iPad. As a developer it is a very
important part of the application design and development process, enabling the developer
to setup, view and modify the screen setup. The View controller also allows the designer to
setup the navigation and memory management. To create a View Controller for our ‘Hello
World” application follow the sequence of window steps below.

1) Click the File menu in Xcode and select File- New- New File. The following window will
appear.

Copyright: Zach Alexakos 2012

2) The following window should appear. Ensure that the “With XIB for user interface” is
checked. Click Next.

3) Type in Save As as shown below and save into your Hello World Folder. Click Save.

Copyright: Zach Alexakos 2012

4) The following window should appear. (Below is the exact code needed for your program
to work. Don’t be too concerned if you have different code on your screen at the moment).
Leave as is and proceed to the next step.

5) Click on the HelloWorldAppDelegate.h file and study the code.

Copyright: Zach Alexakos 2012

6) Now Click on the .xib file MyViewController.xib. You should see The View Based Appli-
cation Template in your window. (Note: this view can also be accessed when creating a new
file).

7) In the Top Right side of the window select the third View icon to open the Templates.

Copyright: Zach Alexakos 2012

8) We will now add a button (UIButton), a text field (UITextField) and a label (UILabel) to
the controller’s nib file. The three different objects are shown in the following screenshots.
The UI Button.

The UI Text Field.

Copyright: Zach Alexakos 2012

The UI Label.

9) Drag the three UI Fields

Copyright: Zach Alexakos 2012

10) Drag the UI Fields to a location on the screen. Make sure you select the View icon in the
Assistant Editor section. Type in ‘Your Name’ in the Text Box, Delete the ‘Label’ tag in the
Label Field and Type ‘Hello’ in the UI Button.

11) Centre Align your text in each of the UI Fields. Set the Font Size to 14pt for all text. Your
screen should look like the one below.

Copyright: Zach Alexakos 2012

12) The next step is to set up the attributes for the Text Field. For example, if we want to capi-
talise the text being entered we need to select it from the drop down list. Follow the screen
shots below to set up your Text Field attributes.

13) Then move to the right of the screen and in the Attributes Inspector select the following
Text Field traits for the Text Field ‘Your Name’.
a) In Capitalisation Select ‘Words’

b) In Keyboard Select ‘Default’

Click on the Text Field ‘Your
Name’ first so that it is highlight-
ed as shown in the screenshot.

c) In Return Keyboard Select ‘Done’.

Copyright: Zach Alexakos 2012

14) Now we want to make our ‘Hello’ button perform an action when pressed. Click on the
‘Hello’ button as shown below.

15) Now make sue the MyViewController.xib file is selected in the Project Navigator.

16) Now click and select the Assisstant Editor.

17) Make sure the ‘Automatic’ / MyViewController.h is selected.

Copyright: Zach Alexakos 2012

18) While holding down the ‘Control’ key or ‘Ctrl’ Key down, click on the Hello button with
your mouse and drag the arrow to where it is located on the screen.

19) When you release the mouse button a window will open as follows

20) Change the settings to the following then click Connect

Copyright: Zach Alexakos 2012

21) You will notice that in the Assistant Editor a line of code has been added to our
MyViewController.h file as shown below

22) A short explanation of the code - (IBAction)changeGreeting:(id)sender;
IBAction is a special keyword that is used to tell thew Interafce Builder to treat a method as
an action for target/action connections. It is defined as void.

The implementation file has also had a line of code added. Click on the MyViewController.h
file to see addition made.

23) We will now create an outlet in the Text Field by performing a similar task in Step 18.
Click on the Text Field and once it is highlighted hold the ‘Control’ or ‘Ctrl’ key down and
drag the line from the Text Field to the Assistant Editor as shown below

Copyright: Zach Alexakos 2012

24) Drag while holding down the ‘Control’ or ‘Ctrl’ key across to the Assistant Editor as
shown below. Release the mouse and proceed to step 25.

25) As occured with the ‘Hello’ button once you release the mouse button a window will ap-
pear to allow you to configure the Text Field settings. Change the settings as indicated below.

26) A short explanation of the code @property (nonatomic, retain) IBOutlet UITextField
*textField;
 IBOutlet is a special keyword that is used to tell the Interafce Builder to treat a property as an
outlet. It is defined as nothing so it has no effect at compile time.

27) Finally the same steps need to be followed to configure the ‘Label’. Follow the screenshots
below.

Copyright: Zach Alexakos 2012

28) Fill in the details and click Connect

29) Your .xib file should display the following code

30) Press the ‘Control’ or ‘Ctrl’ key and hold it down and double click on the Text Field ‘Your
Name’. A translucent panel will appear. Click on the ‘delegate’ radio button and holding
down the mouse button drag the line to the ‘File’s Owner’ symbol as shown below

31) Now Save the file
32) Click Run
33) Make sure the iOS Simulator is selected
34) Type in your name and Press the ‘Hello’ button

Copyright: Zach Alexakos 2012

TROUBLESHOOTING:

You may find that when you run the application you have created it outputs a blank screen.
There could be a number of reasons for this. First, you may included the incorrect code syn-
tax, alternatively you may not have linked objects correctly and so on. Any program will re-
quire some tweaking and correction. Below the source code for the “HelloWorld” application
has been included so that you can check over the code, delete irrelevant sections and include
parts that may have been missed.

There are four files from two classes that we will be most concerned with, assuming that the
remainder of the project has been set up correctly.

These files are called:

A) From the HelloWorldAppDelegate Class:
1) The Header File: “HelloWorldAppDelegate.h”
2) The Implementation File: “HelloWorldAppDelegate.m”

B) From the MyViewController Class:
3) The Header File: “MyViewController.h”
4) The Implementation File: “MyViewController.m”

Copyright: Zach Alexakos 2012

1) The Header File: “HelloWorldAppDelegate.h”

2) The Implementation File: “HelloWorldAppDelegate.m”

Copyright: Zach Alexakos 2012

3) The Header File: “MyViewController.h”

4) The Implementation File: “MyViewController.m”

continued next page-

Copyright: Zach Alexakos 2012

4) The Implementation File: “MyViewController.m” cont’d...

Copyright: Zach Alexakos 2012

	INTRODUCTION:
	CREATING AN APPLICATION:
	Template 1: Anaysis Template Detail Sample
	Template 2: Developer’s Analysis Template
	Table 2: Developer Icon and Image Recommendations and Requirements
	THE DESIGN STAGE
	CREATING A PROTOTYPE:
	YOUR FIRST APPLICATION- “HelloWorld”
	ADDING A VIEW CONTROLLER- “HelloWorld”
	TROUBLESHOOTING:

